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Abstract

We derive the asymptotic sampling distribution of various estimators fre-
quently used to order distributions in terms of poverty, welfare and in-
equality. This includes estimators of most of the poverty indices currently
in use, as well as estimators of the curves used to infer stochastic dominance
of any order. These curves can be used to determine whether poverty, in-
equality or social welfare is greater in one distribution than in another for
general classes of indices and for ranges of possible poverty lines. We also
derive the sampling distribution of the maximal poverty lines up to which
we may confidently assert that poverty is greater in one distribution than
in another. The sampling distribution of convenient dual estimators for
the measurement of poverty is also established. The statistical results are
established for deterministic or stochastic poverty lines as well as for paired
or independent samples of incomes. Our results are briefly illustrated using
data for 4 countries drawn from the Luxembourg Income Study data bases.

Keywords Stochastic dominance, Poverty, Inequality, Distribution-free
statistical inference, Order-Restricted Inference.



1. Introduction

Since the influential work of Atkinson (1970), considerable effort has been
devoted to making comparisons of welfare distributions more ethically ro-
bust, by making judgements only when all members of a wide class of
inequality indices or social welfare functions lead to the same conclusion,
rather than concentrating on some particular index. More recently, pleas
have been made for similar robustness in poverty measurement, following
up on the criticism in Sen (1976) of the headcount ratio and the poverty
gap as not taking into account the intensity and the depth of poverty re-
spectively. Such pleas are found, for instance, in Atkinson (1987), Foster
and Shorrocks (1988a,b), and Howes (1993). Robustness is also needed to
guard against the uncertainty and the frequent lack of agreement regarding
the choice of a precise poverty line.

In this paper, we study estimation and inference in the context of inequality,
welfare, and poverty orderings. Our main objective is to show how to
estimate orderings which are robust over classes of indices and ranges of
poverty lines, and how to perform statistical inference on them.!

In the next section, we review the definitions of the various indices in which
we are interested for the distributions of entire populations, and we note
some of the relations among them?. In Section 3, we study estimators of
these indices, based on samples drawn from the populations, and we derive
their asymptotic distributions. In particular, we discuss the statistical con-
sequences of using estimated poverty lines. We also provide estimates of the
thresholds up to which one population stochastically dominates another at
a given order, and of cumulative poverty gap (CPG) curves. Our results
apply equally to the case of observations drawn from independent distribu-
tions and to the case in which dependent observations are drawn from a joint
distribution, as for instance when, with panel data, there are several obser-
vations of the same individual. We obtain as a corollary the distributions
of the two most popular classes of poverty indices, both for deterministic
and for sample-dependent poverty lines. The first is the class of additive
poverty indices, which include the Foster et al (1984) indices, which them-
selves include the headcount and average poverty gap measures, the Clark
et al (1981), Chakravarty (1983), and Watts (1968) indices. The second

Work on these lines can be found in, for instance, Beach and Davidson, (1983),
Beach and Richmond (1985), Bishop et al (1989), Howes (1993), Anderson (1996),
Davidson and Duclos (1997).

Foster (1984), Chakravarty (1990), Foster and Sen (1997) and Zheng (1997a),
among others, can also be consulted for a review of different aspects of the social
welfare, poverty, and inequality literatures.
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is the class of linear poverty indices, which can be expressed as weighted
areas underneath CPG curves. Members of that linear class include the
poverty indices of Sen (1976), Takayama (1979), Thon (1979), Kakwani
(1980), Hagenaars (1987), Shorrocks (1995), and Chakravarty (1997).

Statistical inference for inequality or poverty indices could be performed
without recourse to the asymptotic theory of this paper by use of the boot-
strap, with resampling of the observed data serving to provide estimates
of the needed variances and covariances. However, it is well known that
the bootstrap yields better results when applied to asymptotic pivots, and
it is therefore a better idea to use our results in order to construct such
asymptotic pivots before using the bootstrap — see Horowitz (1997) for an
account of the relevant issues.

Finally, in Section 4, we provide a brief illustration of our techniques using
cross-country data from the Luxembourg Income Study data bases. Most
of the proofs are relegated to the appendix.

2. Stochastic Dominance and Poverty Indices

Consider two distributions of incomes, characterised by the cumulative dis-
tribution functions (CDFs) F4 and Fg, with support contained in the non-
negative real line. We use the term “income” throughout the paper to
signify a measure of individual welfare, which need not be money income.
Let D} (z) = Fa(z) and

Di) - | DG () dy, )

for any integer s > 2, and let D% (x) be defined analogously. It is easy to
check inductively that we can express D?(z) for any order s as

sion 1 v .
D)= o2y | = w0 ap) 2)

Distribution B is said to dominate distribution A stochastically at order s
if DS (x) > D%(z) for all z € R. For strict® dominance, the inequality
must hold strictly over some interval of positive measure. Suppose that
a poverty line is established at an income level z > 0. Then we will say
that B (stochastically) dominates A at order s up to the poverty line if
D% (z) > D§(x) for all z < .

Since the main focus of this paper is statistical, we will not distinguish strict and
non-strict dominance, since near the margin no statistical test can do so.
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First-order stochastic dominance of A by B up to a poverty line z implies
that Fa(x) > Fp(x) for all z < z. This is equivalent to the statement
that the proportion of individuals below the poverty line (the headcount
ratio) is always (weakly) greater in A than in B, for any poverty line not
exceeding z.

Second-order dominance of A by B up to a poverty line z implies that
D?%(z) > D%(xz), that is, that

/ “(@— y)dFa(y) > / (@~ ) dFs(y) (3)
0 0

for all x < z. When the poverty line is z, the poverty gap for an individual
with income y is defined as

9(2,y) = (z —y)y = max(z —y,0) =z — y* (4)

The notation x4 will be used throughout the paper to signify max(z,0).
In addition, censored income y* is defined for a given poverty line z as
min(y, z). We can see from (3) that stochastic dominance at order 2 up
to z implies that, for all poverty lines x < z, the average poverty gap in A,
D% (z), is greater than that in B, D%(z). The approach is easily generalised
to any desired order s.

Ravallion (1994) and others have called the graph of D!(x) a poverty in-
cidence curve, that of D?(z) a poverty deficit curve (see also Atkinson
(1987)), and that of D3 (x) a poverty severity curve. D!(z) is shown in
Figure 1 for two distributions A and B. Distribution B dominates A for all
common poverty lines below z. The area underneath D!(x) for x between
0 and z equals the average poverty gap D?(z), which is clearly greater for A
than for B.

Following Atkinson (1987), we consider the class of poverty indices, defined
over poverty gaps, that take the form

1(z) = / “r(glz,y) dE(y). (5)

These can be regarded as absolute indices since equal additions to both
z and y do not affect them. In Atkinson (1987), Foster and Shorrocks
(1988a) and McFadden (1989), it is shown, in the context of risk aversion,
that, for all indices (5) for which = is differentiable and increasing with
7(0) = 0, IIa(x) > Hp(x) for all z < z if and only if B stochastically
dominates A up to z at first order. This class of indices, along with the
headcount ratio, for which it is easy to see that the result holds as well,
will be denoted P!. Similarly, the class P? is defined by convex increasing
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functions 7 with w(0) = 0. The use of indices in P? is analogous to using
social evaluation functions that obey the Dalton principle of transfers (see
the discussion of this in Atkinson (1987)). It is easy to show that all indices
in P? are greater for A than for B for all z < z if and only if B stochastically
dominates A up to z at second order. In general, for any desired order s,
we can define the class P* to contain those indices (5) for which 7(*)(2) > 0
for z > 0, 7¢=1(0) > 0, and 7 (0) = 0 for i = 0,...,5 — 2. Then it is
easy to show that IT4(z) > IIg(x) for all z < z for all IT € P® if and only
if B dominates A up to z at order s. The classes P° of poverty indices
can be interpreted using the generalised transfer principles of Kolm (1976),
Fishburn and Willig (1984) and Shorrocks (1987). Note that, for class P?,
we need not require that 7/(0) = 0, but, for s > 2, all the derivatives of 7
up to order s — 2 must vanish at 0.°

A useful concept for the analysis of poverty is the maximum common
poverty line z; up to which B stochastically dominates A at order s. All in-
dices in P? will then indicate greater poverty in A than in B for any poverty
line no greater than zs. If B stochastically dominates A (at first order) for
low thresholds z, then either B dominates A everywhere (in which case
we have first-order welfare dominance in the sense of Foster and Shorrocks
(1988b)), or else there is a reversal at the value z; defined by

z1 =inf {z > 0| Fa(x) < Fp(z)}. (6)

z1 is illustrated in Figure 1. If z; is below the maximum possible income,
we can repeat the exercise at order 2. Either B dominates A at second
order everywhere,® or there exists zo defined by

2y = inf {x > 0| D% (x) < D%(x)}. (7)

This procedure can be continued either until stochastic dominance at some
order s is achieved everywhere, or until z; has become greater than what
is seen as a reasonable maximum possible value for the poverty line (or
welfare censoring threshold) z. It is shown in Lemma 1 in the Appendix

For s = 1,2, Foster and Shorrocks (1988b) show how some of these dominance
relationships can be extended to poverty indices (or censored social welfare func-
tions) that may be non-additive.

For a > s, the FGT indices A®(z) defined below obey this continuity condition
and thus belong to the classes P°. Besides, if an additive index of the type
A(z) = fooo 0(y, z) dF'(y) defined below belongs to P*®, then, for v > 1, all additive

indices of the form ((y, 2))” will belong to P**!.

This is equivalent to Generalised Lorenz dominance of the distribution of incomes
in B over that in A, and to second-order welfare dominance.
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that stochastic dominance of A by B up to any finite z will be achieved
for some suitably large value of s. This result confirms the interpretation
of stochastic dominance for general s given by Fishburn and Willig (1984)
in terms of principles that give increasing weights to transfers occurring
at the bottom of the distribution. The limit as s — oo has a Rawlsian
flavour, since, in that limit, only the very bottom of the two distributions
determines which dominates the other for large s.

In comparing poverty across time, societies, or economic environments,
it can be desirable to use different poverty lines for different income
distributions.” This is particularly common in studies of poverty in de-
veloped economies where a proportion of median or average incomes is
often used as a “poverty line” to make cross-country comparisons.® We
may continue to use the classes P® as above, but now, in order to compare
A and B, we use two different poverty lines z4 and zg. Then it is easily
shown that there is at least as much poverty in A as in B, according to all
indices in P?, if and only if D% (24 — 2) — D(2p — 2) > 0 for all x > 0.9
This just involves checking whether B dominates A for all pairs of poverty
lines of the form (z4 — x,zp — x) with x > 0. As z varies, the absolute
difference between the two poverty lines remains constant. Of course, this
relation no longer constitutes stochastic dominance at order s.

The popular FGT (see Foster et al (1984)) class of additive poverty indices
is defined by!'°

A%(z) = / (e —y) T dF(y) = / Ty T AR, )

These indices are clearly related to the criteria for stochastic dominance,
as was noted by Foster and Shorrocks (1988a,b). In fact, if « is an integer,
it follows from (2) that A%(z) = (a — 1)! D*(x).

See, for instance, Greer and Thorbecke (1986) and Ravallion and Bidani (1994),
where poverty lines are estimated for different socio-economic groups, and Sen
(1981, p.21) on the issue of comparing poverty of two societies with either common
or different “standards of minimum necessities”.

On this, see, for instance, Smeeding et al (1990), Van den Bosch et al (1993),
Gustafsson and Nivorozhkina (1996), or Atkinson (1995).

Well-known arguments of the type found in Foster and Shorrocks (1988b) can
be used to show that this extends to non-additive indices for s = 1,2. In the
terminology of Jenkins and Lambert (1997), dominance for s = 2 implies an
ordering for all generalised (additive or non-additive) poverty gap indices.

The original FGT indices are normalised by 2®~'. We return to the interpretation
of this normalisation below.
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For any one member of the FGT class of indices, there may be a range of
common poverty lines for which poverty in A is greater than in B. For any
such line z, the index A® shows more poverty in A than in B if D (z) —
D% (x) > 0 for x = 2z, but not necessarily for all < z. Hence, it could
be that, for a given range of z, we find dominance of A by B according
to A' and A3, but also find dominance of B by A according to A?, a
reversal which would not be possible with stochastic dominance relations.
We could then define the thresholds z; and z}, such that B dominates

s ?
A according to A® only for z € [2;,2)]. More generally, we may only
wish to check whether D% (z) > D% (x) for  in our range of interest. For
s =1 or s = 2, this leads to the concept of restricted stochastic dominance
defined in Atkinson (1987) for the headcount ratio and the mean poverty
gap respectively (see his Conditions 1 and 2). It is clear that such restricted

dominance conditions can be applied and generalised to any order s of the

FGT index.

Other poverty indices can also be expressed in the additive form of (2), that
is, as

Alz) = / by, 2) dF (y) (9)

for suitable choices of d(y,z). This is the case for the Clark et al (1981)
second family of indices, for the Chakravarty (1983) index, for which
d(y,z) = 1 — (y*/2)¢ for 0 < e < 1, and for the Watts (1968) index,
where 0(y,z) = log(z/y*). Bourguignon and Fields (1997) also propose
an additive index that allows for discontinuities at the poverty line, with
5(y,2) = g(z,y)** ! + asl(y < 2), where I(y < z) is an indicator function
equal to 1 when y < z, and 0 otherwise.

Stochastic dominance at first and second order can also be expressed in
terms of quantiles. This is called the p-approach to dominance. The indices
in P! indicate at least as much poverty in A as in B if and only if, for all
O<p=<1,

(24 = Qa(p))+ — (2B — QB(P))+ 2 0, (10)

where Q 4(p) and Qp(p) are the p-quantiles of the distributions A and B re-
spectively. If z4 = zp, condition (10) simplifies to checking if the quantiles
of B’s censored distribution are never smaller than those of A. As can be
seen from Figure 1, the condition (10) need only be checked for values of p
less than the greatest value, p* in the figure, for which zp — Qp(p*) > 0.
It is also clear from the figure that, where the curves for A and B cross, at
p = p1, the common value of Q4(p1) and Qp(p1) is the z; defined in (6).

There also exists a p-approach to second-order dominance. To see this,
define the cumulative poverty gap (CPG) curve (also called TIP curve by



11

Jenkins and Lambert (1997), and poverty gap profile by Shorrocks (1998);
see also Spencer and Fisher (1992)) by

Q(p)
G(p:z) = / 9(z,y) dF (y). (11)

It is clear that G(p;z)/p is the average poverty gap of the 100p% poorest
individuals. Typical CPG curves are shown in the upper panel of Figure 2.
For values of p greater than F(z), the CPG curve saturates and becomes
horizontal. Since F(z) = D!(z), the abscissa at which the curve becomes
horizontal is the headcount ratio. The ordinate for values of p such that
F(z) < p <1 is readily seen to be D?(z), the average poverty gap.

To make the link with second-order stochastic dominance, we quote a result
of Jenkins and Lambert (1997) and Shorrocks (1998). They show that, for
two distributions A and B and a common poverty line z, it is necessary
and sufficient for the stochastic dominance of A by B at second order up
to z that Ga(p; z) > Gp(p; z) for all p € [0,1]. The more general case with
different poverty lines can be easily derived from Theorem 2 in Shorrocks
(1983). Using Shorrocks’ result, we find that poverty is greater in A than
in B according to all indices in the class P? if and only if the CPG curve
for A (using z4) everywhere dominates the CPG curve for B (using zp)'!.

CPG curves can be related to generalised Lorenz curves GL(p), defined by
(see Shorrocks (1983)):

Q(p)
G’L(p)z/0 y dF(y).

It is clear from this definition and (11) that G(p;z) = zp — GL(p) for
p < D(z). Thus, as shown in Figure 2, for p < D1(2), G(p; 2) is the vertical
distance between the straight line zp with slope z and GL(p). When G(p; 2)
saturates at p = D'(2), its derivative with respect to p vanishes, and so we
see that, at p = D'(2), GL'(p) = z. Thus, for p > D(z), G(p;z) is the
vertical distance between the line zp and the tangent to GL(p) at p = D'(2).
When we compare two distributions, A and B, this link between G L(p) and
G(p; z) shows that the critical second-order poverty line zo defined in (7)
is given by the slope of the line that is simultaneously tangent to both of
the generalised Lorenz curves, at points a and b in Figure 2. This follows
because, as can be seen in the figure, the vertical distances between the
line zop and the two generalised Lorenz curves at the points at which their

See also Jenkins and Lambert (1998) for an extension of this to generalised poverty
gap indices.
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13

14

slopes equal 2o are equal. Since these distances equal D?(23), the result
follows.

A popular class of poverty measures that are linear in incomes can be easily
obtained from G(p;z). To see this, consider the class of indices ©(z) that
measure a weighted area beneath the CPG curve

q(z)
— / 0(p) G(p; 2) dp (12)

for various choices of the functions 7(-), ¢(+), and 6(-). ©(z) is linear in in-
comes since G(p;z) is itself a linear (cumulative) function of incomes.!?
Sen’s (1976) index is given by setting 0(p) = 2, 7(z) = D!(z), and
q(z) = DY(2). 0(p) = 2, 7(2) = D?(z) and ¢(z) = 1 yield the Takayama
(1979) index. 6(p) = 2, 7(2) = 1 and ¢(z) = 1 give Thon’s (1979),
Shorrocks’ (1995) and Chakravarty’s (1997) poverty indices. Kakwani’s
(1980) index is obtained with 6(p) = (k(k + 1)) (D*(z) —p)" ~ /(D'(2))",
with k > 0, 7(2) = 1, and ¢q(z) = D'(2). More generally, we can define any
linear poverty index @(z) by defining (p) as some particular non-negative
function of p. As for the FGT indices, we might also wish to infer the
restricted ranges [27, 2] over which the additive or linear indices A(z) and
O(z) show more poverty in A than in B.

In the literature on the measurement of poverty, the poverty gap (4) is
sometimes normalised by the poverty line.!> For this, absolute poverty
gaps g(z,y) are replaced by relative poverty gaps!* ¢"(z,y) = g(z,v)/z, in
the definitions of the poverty indices found in (5). We define classes P? of
relative poverty indices analogously to the classes P*, with ¢"(z,y) in place
of g(z,y). The stochastic dominance conditions are obviously unchanged if
poverty lines are common. It can be seen that there will be more poverty
in A than in B for all indices in P? if and only if

T

D5 (zaz) D%(zpx)
As 1 - Bs—l Z 0 (13)
ZA “B

for all z € [0,1]. The theoretically equivalent p-approach for class P} is
given by checking whether

(24 = Qap),. (28— QD)

- t>0. (14)
ZA ZB

This is analogous to the definition of linear inequality indices in Mehran (1976).

It is not clear that this is desirable when poverty lines differ across groups or
societies; see Atkinson (1991), p.7 and footnote 3.

For a discussion of absolute versus relative poverty gaps and indices, see Blackorby
and Donaldson (1978) and (1980).
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16

17

For second-order dominance, the p-approach can be derived by redefining
the CPG curve in terms of relative poverty gaps as follows:

= [ (—(z - 2@)*) iy (19

and checking whether G, (p) — G'z(p) > 0 for all 0 < p < 1.1

Finally, for indices of relative inequality, observe that D*®(z) can be used
to check both equality and welfare dominance when means are the same.
When A and B have different means, 4 and pup say, we can study equal-
ity dominance by comparing the mean-normalised distributions Fq(xu4)
and Fp(zpp).t® This implies checking whether

D5 (paz)  Dy(ppz)

wt !

for all x > 0. For s = 2, this is equivalent to checking Lorenz dominance.

Similarly to zs, we can define critical common proportions xs of the respec-

tive means up to which condition (16) is met at a given order s. When

Lorenz curves cross, o will give the slope of the line that is simultaneously
tangent to both of the Lorenz curves.!”

>0 (16)

3. Estimation and Inference

Suppose that we have a random sample of N independent observations y;,
i =1,...,N, from a population. Then it follows from (2) that a natural
estimator of D*(z) (for a nonstochastic ) is

@)

D*(z) = GO

1 0 1 N (17)
- N(s—1)! (z — yi)s_ll(yi <zxz)= m Z(l‘ — yi)j__l

i=1 =1

where F" denotes the empirical distribution function of the sample and I (+)is
an indicator function equal to 1 when its argument is true and 0 otherwise.
For s = 1, (17) simply estimates the population CDF by the empirical
distribution function. For arbitrary s, it has the convenient property of
being a sum of IID variables.

See also Jenkins and Lambert (1998).

This is also discussed in Foster and Shorrocks (1988c), Foster and Sen (1997) and
Formby et al (1998).

The argument for this is analogous to that used above in discussing Figure 2.
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When comparing two distributions in terms of stochastic dominance, two
kinds of situations typically arise. The first is when we consider two inde-
pendent populations, with random samples from each. In that case,

Var(ﬁj(x) - D3 (z') = var(ﬁi‘(x)) + Var(ﬁ% (). (18)

The other typical case arises when we have N independent drawings of
paired incomes, y{* and yZ, from the same population. For instance, yi!
could be before-tax income, and y? after-tax income for the same individ-
ual i, 4 =1,..., N. The following theorem allows us to perform statistical
inference in both of these cases.

Theorem 1:  Let the joint population moments of order 2s — 2
of y* and y® be finite. Then N'/2(D% (z) — D3 (x)) is asymptot-
ically normal with mean zero, for K = A, B, and with asymptotic
covariance structure given by (K,L = A, B)

lim N cov(Dj(z), D3 (2’

Jim N cov(Dj(2), D (a"))

1 S— S— S S
= ————=E((@—y")T @ —y")) - Di(2) Di(a").

((s—1))
(19)

Proof: For each distribution, the existence of the population moment of
order s—1 lets us apply the law of large numbers to (17), thus showing that
D#(z) is a consistent estimator of D*(z). Given also the existence of the
population moment of order 2s—2, the central limit theorem shows that the
estimator is root-N consistent and asymptotically normal with asymptotic
covariance matrix given by (19). This formula clearly applies not only
for y4 and y® separately, but also for the covariance of ﬁi and ﬁg

If A and B are independent populations, the sample sizes N4 and Ng may
be different. Then (19) applies to each with N replaced by the appropriate
sample size. The covariance across the two populations is of course zero. ||

Remarks: This theorem was proved for the case of independent samples
as early as 1989 in an unpublished thesis, Chow (1989). The sampling
distribution of the related estimator A®(z) (see (8)) with a fixed z and
independent samples is also found in Kakwani (1993), Bishop et al (1995)
and Rongve (1997). For a different approach to inference on stochastic
dominance, see Anderson (1996).

The asymptotic covariance (19) can readily be consistently estimated in
a distribution-free manner by using sample equivalents. Thus D? (x) is
estimated by D?(z), and the expectation in (19) by

N

1 s— s—

Sl A U ) b (20)
=1
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If B does dominate A weakly at order s up to some possibly infinite thresh-
old z, then, for all x < z, D% (xz) — D%(xz) > 0. There are various hy-
potheses that could serve either as the null or the alternative in a testing
procedure. The most restrictive of these, which we denote Hy, is that
D% (z) — D§(z) = 0 for all # < z. Next comes H;, according to which
D% (z) — D3(x) > 0 for x < z, and, finally, Hs, which imposes no re-
strictions at all on D% (z) — D% (x). We observe that these hypotheses are
nested: Hy C Hy C Hs.

McFadden (1989) proposes a test based on Supz<z(f)f4(x) — ﬁ%(m)) for
the null of Hy against H; For s = 1, this turns out to be a variant of
the Kolmogorov-Smirnov test, with known properties, for the identity of
two distributions. Of higher values of s, McFadden considers only s = 2.
Although it is easy to compute the statistic, its asymptotic properties under
the null are not analytically tractable. However, a simulation-based method
can provide critical values and P values.

In Kaur, Prakasa Rao, and Singh (1994) (henceforth KPS), a test is pro-
posed based on the minimum or infimum of the ¢ statistic for the hypothesis
that D% (z) — D% (x) = 0, computed for each value of z < z. The minimum
value is used as the test statistic for the null of non-dominance, Ho\ H7,
against the alternative of dominance, H;. Since the test can be interpreted
as an intersection-union test, it is shown that the probability of rejection
of the null when it is true is asymptotically bounded by the nominal level
of a test based on the standard normal distribution.

Both the McFadden and the KPS statistics are calculated as the extreme
value of the possibly very large set of values computed for z = Y;* and
r = YjB forallt=1,...,Na,7 = 1,..., Ng. Other procedures make use
of a predetermined grid of a much smaller number of points, x; say, for
j=1,...,m, at which d; = D% (z;) — D} (x;), or some quantity related to
it, like the t statistic considered above, is evaluated. The arbitrariness of
the choice of the number of points m, and the precise values of the z;, is
an undesirable aspect of all procedures of this sort. At the very least, it is
necessary that the x; should constitute a grid covering the whole interval
of interest.

Howes (1993) proposed an intersection-union test for the null of non-
dominance, very much like the KPS test, except that the ¢ statistics are
calculated only for the predetermined grid of points. Its properties are
similar to those of KPS.

The technique developed by Beach and Richmond (1985) allows us to test
H; (dominance) against Hy (no restriction). The alternative is not the hy-
pothesis that A dominates B. That hypothesis can of course play the role
of Hy and be tested similarly against H. This technique was originally
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designed by Richmond (1982) to provide simultaneous confidence inter-
vals for a set of variables asymptotically distributed as multivariate nor-
mal with known or consistently estimated asymptotic covariance matrix.
It was extended by Bishop, Formby, and Thistle (1992), who suggested a
union-intersection test of the hypothesis that one set of Lorenz curve decile
ordinates dominates another. For a test of stochastic dominance, one can
use the t statistics for the hypotheses that the individual d;, j = 1,...,m,
are zero. The hypothesis H;, which implies that they are all nonnegative, is
rejected against the unconstrained alternative, Ho, if any of the ¢ statistics
is significant with the wrong sign (that is, in the direction of dominance
of B by A), where significance is determined asymptotically by the critical
values of the Studentised Maximum Modulus (SMM) distribution with m
and an infinite number of degrees of freedom.

None of the tests discussed so far makes use of the asymptotic covariance
structure provided by Theorem 1. As a result, they can be expected to be
conservative, that is, lacking in power, relative to tests that do exploit that
structure. Such tests, to date at least, all rely on a predetermined grid, on
which stochastic dominance implies the set of m inequalities d; > 0. Meth-
ods for testing hypotheses relating to such inequalities are developed in
Robertson, Wright, and Dykstra (1988), in the context of order-restricted
inference. For our purposes, the relevant methods can be found in Kodde
and Palm (1986), and Wolak (1989). Wolak provides a variety of asymp-
totically equivalent tests of Hgy against Hy, and of H; against Hs, and
provides the joint distribution under Hy of the statistics corresponding to
the two tests. He also shows that this allows us to bound the size of the
test asymptotically when H; is the null, because, for any nominal level, the
rejection probability under H; is maximised when Hj is true.'® The test of
H, against Hs is of less interest, and in any case it is a perfectly standard
test of a set of equality restrictions.

A feature of the order restricted approach is that, if m is large, the mixture
of chi-squared distributions followed by the test statistics under Hy can,
as Wolak remarks, be difficult to compute. However, he also proposes a
Monte Carlo approach that works independently of the magnitude of m,
and can be implemented with sufficient accuracy easily enough on present-
day computers. The necessary ingredient for any of these procedures is the
asymptotic covariance structure of the d;.

Note, however, that in the more general context of arbitrary nonlinear inequality
restrictions on the parameters of a nonlinear model, it is not necessarily true that
the rejection probability is maximised at the point at which all the restrictions
hold with equality: see Wolak (1991) for full discussion of this point.
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One should note that non-rejection of the null of dominance by either
the Wolak or Bishop-Formby-Thistle approach can occur along with non-
rejection of the null of non-dominance by the KPS or Howes approach.
This occurs naturally if the D*(-) functions for the two populations are
close enough over part of the relevant range. Such issues, and many oth-
ers, are investigated in a valuable recent paper of Dardanoni and Forcina
(1999), who also consider hypotheses according to which more than two dis-
tributions are ranked by a stochastic dominance criterion. They emphasise
the intrinsically conservative nature of the KPS and Howes tests, and find
that they are wholly lacking in power for comparisons with more than two
distributions, although, as will be seen in our empirical illustration in Sec-
tion 4, they remain useful with just two distributions when it is undesirable
to infer dominance unless there is very strong evidence for it.

Dardanoni and Forcina investigate, in a set of Monte Carlo experiments,
the power gain achieved by the tests of Wolak and of Kodde and Palm rela-
tive to tests that do not take account of the covariance structure of the d;.
They find that these are greatest when the d; are negatively correlated.
Although this can occur naturally in comparisons of more than two popu-
lations, the usual case with only two is that they are positively correlated.
Even so, they find that methods like Wolak’s are often worth the extra
computational burden they impose — this conclusion is borne out by the
results in our empirical illustration. They also advocate the use of tests
that combine the information in a test of Hy against H; with that in a test
of H;y against Hs, bearing in mind that the statistics are not independent.
Their very interesting analysis is however beyond the scope of this paper.

In Theorem 1, it was assumed that the argument x of the functions D*(x)
was nonstochastic. In applications, one often wishes to deal with D*(z—x),
where z is the poverty line. In the next Theorem, we deal with the case in
which z is estimated on the basis of sample information.

Theorem 2: Let the joint population moments of order 2s — 2
of y4 and y® be finite. If s = 1, suppose in addition that F4 and
Fp are differentiable and let D°(z) = F’(x). Assume first that N
independent drawings of pairs (yA, y?) have been made from the
joint distribution of A and B. Also, let the poverty lines z4 and zp
be estimated by Z4 and Zp respectively, where these estimates are
expressible asymptotically as sums of IID variables drawn from the
same sample, so that, for some function 4(+),

N
Ea=N"T") €ay) +o(l) as N — oo, (21)
=1
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and similarly for B. Then NY/2(D% (3x — ) — D (zx — 1)), K =
A, B, is asymptotically normal with mean zero, and with covariance
structure given by (K,L = A, B)

lim N cov(Dy (2 — z), D (21 —2)) =

N—o0

cov (D3 exe = )xc (™) + (5= D) (o — 2 = y")37

DM = 2)Eny) + (s = D) (1 — 2/ =y 7).
(22)
If y4 and y? are independently distributed, and if N4 and N IID
drawings are respectively made of these variables, then, for K = L,
Nk replaces N in (22), while for K # L, the covariance is zero.

Proof: See appendix. |

Remarks: The sampling distribution of the headcount when the poverty
line is set to a proportion of a quantile is derived in Preston (1995), using
results on the joint sampling distribution of quantiles. More generally, the
sampling distribution of additive indices when the poverty line is expressed
as a sum of IID variables is independently derived in Zheng (1997b) using
the theory of U statistics.

Estimates of the poverty lines may be independent of the sample used to
estimate the D*(z — ), as for example if they are estimated using different
data. In that case, the right-hand side of (22) becomes

D3 Yz —2)D5 2 — 2) COV(N1/2(2K — 2x), NY2(3p — ZL))

-1 o— —1 s—

+Cov<((s - (zx —z— yK)+ L ((s— 1)!) (2p — 2’ — yL)Jr 1). (23)
For indices based on relative poverty gaps, one needs the distribution
of D*(Zx) for positive x; see (13) and (16). The result of Theorem 2 can be

used by first eliminating the additive x in that result, and then replacing 2
by Zx.

The covariance (22) can, as usual, be consistently estimated in a distri-

— 14 —



bution-frec manner, by the expression
12((195 (e~ el + (s~ D) Gae — 2 — o))
(D5 G =) + (5= D) - o)) )
(v é(ﬁ%‘l(éx eI + (G5 D) e~ - )

x N7 i(f)z—l@ — eyl + ((s = D) (2 — o/ — b)Y 1)).

The most popular choices of population dependent poverty lines are frac-
tions of the population mean or median, or quantiles of the population
distribution. Clearly any function of a sample moment can be expressed
asymptotically as an average of IID variables, and the same is true of func-
tions of quantiles, at least for distributions for which the density exists,
according to the Bahadur (1966) representation of quantiles. For ease of
reference, this result is cited as Lemma 2 in the Appendix. The result im-
plies that Q(p) is root- N consistent, and that it can be expressed asymptot-
ically as an average of IID variables. When the poverty line is a proportion
k of the median, for instance, we have that:

L (I <Q(0.5) —05
E(yi) = —k ( F’(Q(O.5)) ) )

where QQ(0.5) denotes the median. When z is k times average income, we
have

§(yi) = kyi.

This IID structure makes it easy to compute asymptotic covariance struc-
tures for sets of quantiles of jointly distributed variables.

For the purposes of testing for stochastic dominance, all the remarks fol-
lowing Theorem 1 regarding possible procedures continue to apply here.
Only the asymptotic covariance structure is different, on account of the
estimated poverty lines.

We turn now to the estimation of the threshold z; defined in (6). Assume
that Fa(z) is greater than Fp(x) for some bottom range of z. If F4(x) is
smaller than Fg(z) for larger values of z, a natural estimator 2, for z, can
be defined implicitly by



If Fu(z) > F(z) for all z < z, for some prespecified poverty line z, then
we arbitrarily set Z; = z. If 27 is less than the poverty line z, we may define
22 by R R

D% (%) = Dy (22)
if this equation has a solution less than z, and by z otherwise. And so on
for zg for s > 2: either we can solve the equation

ﬁil('%s) :ﬁSB(és)a (24)

or else we set Z; = z. Note that the second possibility is a mere mathemat-
ical convenience used so that Z, is always well defined — we may set z as
large as we wish. The following theorem gives the asymptotic distribution
of Z; under the assumption that z; < z exists in the population.

Theorem 3: Let the joint population moments of order 2s — 2
of y* and y® be finite. If s = 1, suppose further that F4 and Fp
are differentiable, and let DY(x) = F’(x). Suppose that there exists
zs < z such that

D} (zs) = Dp(z),

and that D% (z) > D% (x) for all ¥ < z,. Assume that z is a simple
zero, so that the derivative D% '(zs) — D% '(z;) is nonzero. In the
case in which we consider N independent drawings of pairs (y*, y?)
from one population in which y4 and y? are jointly distributed,
N1/2(3,—2,) is asymptotically normally distributed with mean zero,
and asymptotic variance given by:

lim vaur(Nl/Q(,%s — zs)) = ((S — 1)!(Df4_1(zs) - D%_l(zs))>_2><

N—o0
(Var((zs — yA)i_l) +var((zs —y”)")
— 2cov((zs — yA)i_l, (zs — yB)i_l))
If y4 and y® are independently distributed, and if N4 and Np

IID drawings are respectively made of these variables, where the
ratio r = N4 /Np remains constant as N4 and Np tend to infinity,

then Ni‘/ 2(28 — zg) is asymptotically normal with mean zero, and
asymptotic variance given by

Var((z — yA)i_l) + Tvar((z — yB)i_l) '
((s= DD (2) - D3 ()

lim Var(Ni‘m(é —2z)) =

N p—00

Proof: See appendix. |
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Remark: In this theorem, we assume that z; exists in the population,
and is a simple zero of D%(x) — D%(z). Since the D3, K = A, B, are
consistent estimators of the Dj., this implies that, in large enough samples,
Zs exists and is unique. In general, in finite samples, it can happen that,
although z, exists, the estimated curves D% (z) and D% (x) do not intersect.
In such cases, our definition gives Z; = z, and no real harm is done. It may
also happen that, even if no z, exists, the estimated curves cross. In that
case, the regularity condition of the theorem is not satisfied, and nothing
simple can be said of the spurious estimate Z;, except of course that, in
large enough samples, Z; = z with high probability. Clearly, no asymptotic
approach can handle these awkward cases, because asymptotically the true
situation in the population is reflected in the sample. The situation is
in fact analogous to what happens with parametric models for which the
parameters may be identified asymptotically but not by a given finite data
set, or vice versa.

The results of Theorems 1, 2 and 3 can naturally be extended to the additive
poverty indices A(z) of (9) by using A(z) in place of D*(z), é(y,x) for
((s— 1)) "z —y)5~", and A'(z) for D*1(z).

In order to perform statistical inference for p-approaches, we now consider
the estimation of the ordinates of the cumulative poverty gap curve G(p; z)
defined in (11). The natural estimator, for a possibly estimated poverty
line 2, is
N

Gp;2) =N"" Y (2—vi)+ I(yi < Q(p))

i=1
where Q(p) is the empirical p-quantile. The asymptotic distribution of this
estimator is given in the following theorem.

Theorem 4: Let the joint population second moments of y and
y®B be finite, and let F4 and Fp be differentiable. Let 24 and 25 be
expressible asymptotically as sums of IID variables, as in Theorem 2.
If N independent drawings of pairs (y“,y?) are made from the
joint distribution of A and B, then N'V/2(G g (p; 2) — Gk (p; 2)), for
K = A, B, is asymptotically normal with mean zero, and asymptotic
covariance structure given by

Nli_r)nooNcov((A}’K(p; 2K), GL(p/;iL)) =
cov((f(yK < Qx®) ((ex — )4 — (ex — Qu (D))
+ fK(yK) min(p, FK(ZK))>, <I(yL < QL(p’)) ((ZL - yL)+

- (= Qu)) + Euls) min(y' Fuz)) ). (25)
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If y4 and y? are independently distributed, and if N4 and N IID
drawings are respectively made of these variables, then, for K = L,
Nk replaces N in (25). For K # L, the covariance is zero.

Proof: See appendix. |

Remarks: If 24 and 2p are independent of the drawings (y*,y?), then the
right-hand side of (25) can be modified as in (23). The result of Theorem 4
for the special case of a deterministic poverty line and for independent
samples can also be found in Xu and Osberg (1998).

The arguments used in Theorems 1-4 can be used to obtain the asymp-
totic distribution of all those indices considered in the previous section not
already covered by the earlier theorems. First, when z is deterministi-
cally set to a level exceeding the highest income in the sample, Theorem 4
yields the sampling distribution of the generalised Lorenz curves, and of
the ordinary Lorenz curves when we also take into account the asymptotic
distribution of the sample mean ji. Second, for the first-order p-approach,
based on quantiles (see (10)), the asymptotic covariance structure is easy
to derive because the quantiles can be expressed asymptotically as averages
of IID variables, by Bahadur’s Lemma, as can the estimated poverty lines,
by (21). Third, for the indices based on relative poverty gaps, inference
on the expressions in (13), (14), (15) and (16) can be performed by using
the asymptotic joint distributions of objects like D? (z), 2 — Q(p), Z and [i.
Fourth, the asymptotic distribution of estimates ©(2) of the general class
of linear indices (12) can be readily obtained using the arguments of the
proof of Theorem 4.!? Fifth, the asymptotic distribution of estimators of
critical poverty lines z (for z = z7,2") for the linear indices ©(z) can
be obtained from Theorem 3 by replacing (s — 1)~2 Valr((zS — yK)i_l) by
limNﬁooNvar(@AK(z)) and D5 '(zs) by @)% (z), K = A,B. Sixth, the
asymptotic distribution of estimators of critical relative poverty lines x in
(16) can be derived from Theorem 3. Finally, the arguments found in the
proof of Theorem 3 can also be used to provide the asymptotic distribution
of the abscissae above which quantile, Lorenz, Generalised Lorenz, or CPG
curves cross. For Lorenz curves, for instance, this would give the asymp-
totic distribution of the maximum proportion of the population for which
it can be said that the share of total income is greater in B than in A.

The statistical inference results for the special case of the Sen index with a de-
terministic poverty line can also be found in Bishop et al (1997).
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4. Illustration

We illustrate our results using data drawn from the Luxembourg Income
Study (LIS) data sets® of the USA, Canada, the Netherlands, and Nor-
way, for the year 1991. The raw data were essentially treated in the same
manner as in Gottschalk and Smeeding (1997). We take household income
to be disposable income (i.e., post-tax-and-transfer income) and we apply
purchasing power parities drawn from the Penn World Tables?! to convert
national currencies into 1991 US dollars. As in Gottschalk and Smeeding
(1997), we divide household income by an adult-equivalence scale defined
as h"%, where h is household size, so as to allow comparisons of the welfare
of individuals living in households of different sizes. Hence, all incomes are
transformed into 1991 adult-equivalent US$. All household observations
are also weighted by the LIS sample weights “hweight” times the number
of persons in the household. Sample sizes are 16,052 for the US, 21,647 for
Canada, 8,073 for Norway, and 4,378 for the Netherlands.

This illustration does not deal with important statistical issues. First, we
assume that observations are drawn through simple random sampling. The
LIS data, like most survey data, are actually drawn from a complex sam-
pling structure with stratification, clustering and non-deterministic inclu-
sion rates.?? It would be possible, if messy, to adapt our methods to deal
with complex sampling structures, provided of course that the design was
known. Second, negative incomes are set to 0. This procedure, however,
affects no more than 0.5% of the observations for all countries considered
here. Finally, we ignore the measurement errors due to contaminated data;
see Cowell and Victoria-Feser (1996) for a discussion of how to minimise
the consequences of these.

Table 1 shows the estimates D'(z) and D?(z) for the selected countries
and for poverty lines varying between US $2,000 and US $35,000 in adult-
equivalent units, along with their asymptotic standard errors. For the pur-
pose of comparisons, since the samples for the different countries are inde-
pendent, asymptotic variance estimates for the differences D% () — D% (x)
are obtained by adding the variance estimates for countries A and B. Com-
paring the US with the other countries, we find that first-order dominance
never holds everywhere in the samples.

See http://lissy.ceps.lu for detailed information on the structure of these data.

See Summers and Heston (1991) for the methodology underlying the computation
of these parities, and http://www.nber.org/pwt56.html for access to the 1991
figures.

See Cowell (1989) and Howes and Lanjouw (1998) for the consideration of such
issues in applied distributional analysis.
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It can be seen from the data for s = 1 that, with a conventional significance
level of 5%, Canada has a significantly lower headcount ratio for all z less
than or equal to $25,000 (that is, a poverty line of $50,000 for a family of 4);
in other words, Canada has less poverty than the US for all poverty lines
equal to or below $25,000, and for all P! poverty indices. The American
headcount is significantly lower than that of Norway only for those x no
greater than $15,000. As for the Netherlands, its headcount is initially
significantly greater than that of the US (for x equal to $2,000), it is lower
than for the US for x between $4,000 and $8,000, and it is greater again
subsequently. These results mean that, by use of Howes’ intersection-union
procedure, the null of non-dominance of the US by Canada can be rejected
at the 5% level for all poverty lines up to $25,000. The corresponding
hypotheses for Norway and the Netherlands cannot be rejected. The null
of dominance of the US by Canada, on the other hand, cannot be rejected
by the Bishop-Formby-Thistle (BFT) union-intersection procedure until a
poverty line of $35,000. By use of the Wolak procedure, a similar but more
precise result is obtained. The Wald test statistic of Kodde and Palm was
calculated for the set of incomes given in Table 1 up to $30,000 and up
to $35,000. The weights for the mixture of chi-squared distributions were
obtained by running 10,000 simulations, and P values were calculated. The
P value is 0.71 for the null of dominance of the US by Canada up to $30,000,
but only 0.0001 up to $35,000.

For s = 2, the major difference from the results for s = 1 is that Canada now
dominates the US for all values of x in the samples, and significantly so, so
that Howes’ procedure rejects the null of non-dominance at order 2. Since
there is dominance in the sample, both the BFT and the Wolak method
fail to reject the null of dominance. As for Norway, the initial range of
values of = for which the US is dominated at second order is (as expected)
larger for s = 2 than for s = 1. Compared to the US, the Netherlands have
a significantly greater average poverty gap for x = $2,000, a statistically
indistinguishable average poverty gap for x = $4,000, a lower one for x
between $6,000 and $10,000, and a greater average poverty gap for x above
$15,000. For both Norway and the Netherlands compared with the US,
non-dominance at second order is not rejected by the Howes procedure,
and dominance is rejected by the BFT procedure. In this case, since the
conclusions are clear, it is unnecessary to go to the trouble of using the
Wolak procedure. The comparison of Canada and Norway, however, is less
clear. By use of Wolak’s procedure for z = $5,000 and x = $10, 000, over
which range Norway dominates Canada in the sample, the P value for the
null that Canada dominates Norway is 0.078, so that the null cannot be
rejected at the 5% level. If the income range is extended to $15,000, the
P value grows to 0.14. If it is extended all the way to $35,000, the P value
is 0.40. The closeness at the bottom of the range does of course rule out
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rejection of non-dominance by Howes’ procedure.

Table 2 shows estimates of the thresholds z, for dominance relations, and
[z, 28] for restricted dominance relations, between the US and the other
three countries for s = 1,2,3,4. Not surprisingly, we find that Canada
stochastically dominates the US for s = 1 up to a censoring threshold of
$27,840, with a standard error on that threshold of $1,575. For higher val-
ues of s, Canada dominates the US everywhere up to an arbitrarily large
threshold. For Norway, dominance up to $35,000 is attained for s = 4,
but with a threshold income barely significantly greater than $35,000. Re-
garding the comparison of the Netherlands and the US, we can conclude
that there is first-order dominance of the US for all poverty lines below
$2,958 (with a standard error of $193), that there is restricted first-order
poverty dominance by the Netherlands over the US for poverty lines be-
tween $2,958 and $8,470, and restricted first-order dominance by the US
over the Netherlands for poverty lines above $8,470 (with a standard error
of $203). Similar results hold for higher values of s.

Table 3 illustrates poverty rankings for the US, Canada, and the Nether-
lands when the poverty line is set to half median income in each country.
Even without use of the Wolak procedure, it can be seen, for s = 1, that the
null hypotheses of dominance of the US by Canada or by the Netherlands
cannot be rejected, and that by Howes’ procedure the null of non-dominance
of the US by the other two countries can be rejected. Hence, there is more
poverty in the US than in any of the other two countries for all P! indices,
at poverty lines equal to half of median income and for all other pairs
of lower poverty lines such that the absolute difference between the two
poverty lines remains constant. For s = 1, the rankings of Canada and the
Netherlands switch twice as x approaches 0. For s = 2, however, poverty
becomes everywhere significantly greater (except perhaps for = = $4,000
and x = $3,000) in Canada than in the Netherlands.

Appendix

Lemma 1: If B dominates A for s = 1 up to some w > 0, with
strict dominance over at least part of that range, then for any finite
threshold z, B dominates A at order s up to z for s sufficiently
large.

Proof: We have Fy(z) — Fg(z) > 0 for 0 < z < w, with strict inequality
over some subinterval of [0, w]. Thus

/0w<FA<y) _ Fa(y)dy=a>0.
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We wish to show that, for arbitrary finite z, we can find s sufficiently large
that D% (x) — D3 (x) > 0 for x < z, that is,

T

/Om (1 - g)s_l (dFa(y) — dFp(y)) >0 (26)

for z < 2. For ease in the sequel, we have multiplied D*(z) by (s—1)!/x*~1,
which does not affect the inequality we wish to demonstrate.

Now the left-hand side of (26) can be integrated by parts to yield

s—1
T

| Eato) = Fu) (1= ) ay

xT

We split this integral in two parts: the integral from 0 to w, and then
from w to z. We may bound the absolute value of the second part: Since
|Fa(y) — Fp(y)] <1 for any y and 1 —y/x > 0 for all y < z, we have

s—1
T

/x (Faly) — Fa(y)) (1 - y)H dy ‘

w

A SR (B S

w

For the range from 0 up to w, we have, for s > 2,

S o (1 2)
Loy /0 " (Faty) - Fa(w)) dy
_ <T—1> (-2 (28)

Putting (27) and (28) together, we find that, for z > w,

[ (=5 @ra) - arsw)

X

A0y (e
= (1- E)8_2 (M 14 9) . (29)

i T T

If we choose s to be greater than 1 4+ (z — w)/a, then, for all w < z < z,
(a(s —1) +w)/z —1 > 0. Thus for such s, the last expression in (29) is
positive for all w < x < z. For z < w, the dominance at first order up
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to w implies dominance at any order s > 1 up to w. The result is therefore
proved. |

Lemma 2: (Bahadur, 1966). Suppose that a population is char-
acterised by a twice differentiable distribution function F'. Then, if
the p—quantile of F' is denoted by Q(p), and the sample p-quantile
from a sample of N independent drawings y; from F by Q(p), we
have

N
Q)= Q) =~y 2 (T < Q) =) + O/ 1og )/,

where f = F' is the density.

Proof of Theorem 2:

For distributions A and B, we have
@—DUT@—x%:/ (:—w—y)'dE(y) and
0

(s—D!D°(z—x) = /Oz_m(z —z—y)* YdF (y).

Thus
(s —1)! 15 —z)—D*(z—x)) =

G-—z—y) ' —(z—z—y)* ") dF(y)

(2 =z —y)* Hd(F — F)(y)

/
[
/ (z—x—y)* LdF (y) (30)
[

_|_

_|_

+

(t—z—y) = (z—2z—y)* ) dF - F)y)

o

+/ (G—z—y) = (z—z—y)* 1) dF(y)

@]

+/0 (z—x—y)* Hd(F — F)(y).

It follows from (21) that 2 — z = O(N~%/2), and by standard properties of
the empirical distribution, ' — F = O(N~'/2). Thus the first two terms
and the fourth are of order N~!, and the others are of order N—1/2.
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The third term can be expressed as:
/ (z—x —y)* HdF(y) :/ wTrF(z — 2 — u) = O(N%/%),
Z—x 0

from which we see that it contributes asymptotically only if s = 1. In that
case, the term is

F2—2)—F(z—2)=D%2—x)(2—2)+O(N™1),

since we made the definition D° = F’.

The fifth term is obviously zero for s = 1. For s > 1, it can be expressed as

(2—2) zms_Q(é—:r— )k(z—x— )S_Q_de( ) =

/O ];) Yy Yy Yy
(6-2)(s—1) / (2 —z— y)* 2 dF(y) + O(N"Y) =

(2—2)(s— 1) D*Yz—z)+ON. (31)

We see that expression (31) serves for the fifth term when s > 1 and for
the third when s = 1.

Finally, the sixth term is

and so it is the average of N IID variables of mean zero. Multiplying (30)
by N1/2, we see that

Nl/z(ﬁs(é —z)—D%(z—2)) =D (2 - £)NY2(3 - 2)

1 —1/2 - s—1 s—1 (32)
+(s—1)'N Z((z—x—yi)Jr —E((z—z—y)5 ))
' i=1
The result of the theorem follows from (32) by simple calculation. |

Proof of Theorem 3:

Consider the general problem in which, for some population, a value z is
defined implicitly by h(z) = 0, where the function & is defined in terms
of the population distribution. For instance, if Q(p) is the p-quantile of a
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distribution with CDF F, we have F(Q(p)) = p, and we can set h(z) =
F(z) —p.

For z,, the defining relationship, in terms of the populations A and B,
is D% (zs) = D%(zs), with D% (z) > D%(x) for all x < z5. Thus we set
h(z) = D% (x) — D%(x). According to (24), 2, is defined in terms of h(z) =
D3 (z) — D%(z). Under the assumption that z, exists in the population
and is less than the poverty line z, Z; is clearly a consistent estimator of z,
and, in particular, we need not consider the possibility that Z; = z, since
this will happen with vanishingly small probability as N — oo.

The proof is similar for all values of s, and so we drop s from our notations.
Since h(z) = 0, we have by Taylor expansion that

h(2) = h'(2)(2 — 2) (33)
for some Z such that |Z — z| < |2 — z|. We will show later that
h(z) + h(2) = o(N~Y/?), (34)

It was assumed that h'(z) # 0, and, in fact, since h(z) > 0 for z < z, and
h(z) = 0, it follows that h'(z) < 0. Since 2 — z as N — oo, we have that
Z — zas N — oo as well. Thus for large enough N, h/(2) # 0. It follows
from (33) and (34) that

_hiz)
h'(2)

Z—z=

+o(N~Y?). (35)

Suppose first that the populations A and B are independent, and that we
have N, drawings from one and Np drawings from the other. For the
purposes of the asymptotic analysis, we assume that the ratio r = N4/Np
remains constant as N4 and Npg tend to infinity. We have that

E((z—y")5") = (s = D) Di(2) = (s = 1! Di(2) = B (2 —y")17)

because h(z) = 0. It follows that

1/23 1 —1/2 oA Ays—1 Ays—1
M) = g (N (- - B (o)
P12 N=1/2 f:((z_yf)i_l —E(z—yB)i_1)>) (36)

The expression (36) consists of two independent sums of IID variables to
which we may apply the central limit theorem since moments of order
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~

2s — 2 are assumed to exist. It follows immediately that Ni‘/ *h(z) = 0(1)
in probability, and, from (35), that 2—z = O(N~1/2). In addition, from (1),

W () = D (2) - Dy (2). (37)

If s = 1, (37) remains correct because we defined DY (z) = F/j(z), the
density associated with the CDF F4. We now see from (35) and (36) that

lim Var(Ni/Q(é' —2z)) = var((e yA)j__l) Frvar((e yB)f;_l)

G , (38)
. (D57 () = D) (s — 1Y)

Next, suppose that we have N paired observations y{‘ and y? from one
single population. (36) continues to hold with N4y = N and r = 1. However,
the two sums of IID variables are no longer independent in general, and so
(38) must be replaced by

lim Var(Nl/Q(é' —2z)) =

N—o0
var((z —y)7) +var((z — yB)T!) — 2cov((z —yA)5h (2 — yB)5h) '

(D5 4(2) = Dy () (s — 1))
( )

(39)

Consider the expression

h(z+8) — h(z) — (h(z +8) — h(2)). (41)
for nonrandom ¢. In the case of just one population and N paired drawings
of y# and yZ, we can write

(YG+o-yy! = (+o-yP)r

=1
— =y + e —yP)T).

1

h(z+6) — h(z) = N T

The expectation of this is h(z + ) — h(z), and so (41) is the average of
bounded IID variables with mean zero and finite variance of order 62. Con-
sequently, by the central limit theorem, (41) times N'/? has mean zero and
variance of order §2. Since 2 — z = O(N~'/?) in probability, it follows that
(40) times N'/2 tends to zero in mean square, and hence in probability.
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An exactly similar argument applies when there are two populations. |

Proof of Theorem 4:
We have for both distributions A and B that

Gs) - | T Iy < 2) I < Q) dE ()
LGz / "Ity < 5) Ity < Q) dE(). (12)

The second term on the right-hand side of this is

and the first term is R
Q(p) R
/ (z = y)+ dF(y).
0

This kind of integral can be expressed asymptotically as a sum of 1ID
variables using a technique developed in Davidson and Duclos (1997). The
term becomes

p(z=QP), + N> 1(yi <QP)((z—y:)+ — (= Qp)+) + O(N),

i=1

which to leading order is a deterministic term plus an average of IID random
variables. We can combine the two terms in (42) using (21) to get

N
Gps2) = plz = Q Z( v < QW) (= = v+ — (2= QW))+)

+ (f(yi) — z) min(F(z),p)) + O(N_l). (43)

If z is known and not estimated, we can just set £(y;) = z, and the last
term in the sum will vanish.

It is easy to check that, whether z < Q(p) or z > Q(p), the expecta-
tion of the leading term of the above expression is just G(p;z). The fact
that G A(p; 24) and Gg (p; 2p) are sums of independently and identically
distributed random variables with finite second moments leads to their
asymptotic normality by the central limit theorem. The covariance struc-
ture is obtained by simple calculation. |
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Headcounts and average poverty gaps for various poverty lines

Table 1.

x USA Canada Norway Netherlands
0.0184 0.0071 0.0059 0.0234
2000 (0.001) (0.0006) (0.0009) (0.002)
23.0 8.7 8.5 34.7
(1.5) (0.8) (1.3) (3.7)
0.0461 0.0162 0.0122 0.0332
4000 (0.002) (0.0009) (0.001) (0.003)
81.2 314 27.4 90
(3.7) (2.0) (3.2) (8.2)
0.104 0.042 0.026 0.061
6000 (0.002) (0.001) (0.002) (0.004)
227.7 86.7 64.7 177.4
(6.9) (3.7) (5.6) (13.4)
0.176 0.089 0.086 0.159
8000 (0.003) (0.002) (0.003) (0.006)
505.5 216.8 172.1 374.8
(11.1) (6.2) (9.1) (19.8)
0.250 0.149 0.173 0.310
10000 (0.003) (0.002) (0.004) (0.007)
933 453 429 843
(16) (10) (14) (28)
0.451 0.366 0.511 0.660
15000 (0.004) (0.003) (0.006) (0.007)
2694 1714 2101 3313
(31) (21) (33) (54)
0.625 0.584 0.796 0.856
20000 (0.004) (0.003) (0.004) (0.005)
5397 4112 5447 7153
(45) (33) (50) (74)
0.761 0.751 0.927 0.944
25000 (0.003) (0.003) (0.003) (0.003)
8884 7478 9811 11702
(58) (44) (60) (85)
0.854 0.859 0.970 0.973
30000 (0.003) (0.002) (0.002) (0.002)
12941 11531 14581 16506
(60) (53) (65) (92)
0.908 0.923 0.984 0.985
35000 (0.002) (0.002) (0.001) (0.002)
17362 16004 19468 21410
(75) (58) (69) (97)

Notes: The first item in each box is bl(av)7 beneath is its asymptotic standard error.
Next is D?(z), with its asymptotic standard error underneath. All amounts are in 1991

adult-equivalent US$. Data are for 1991, from the LIS data base.
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Table 2.

Estimates of the thresholds z, for dominance by three
countries over the US

s Canada Norway Netherlands
25, 23]
s=1 27840 13190 [2958, 8470
(1575) (197) (193) (203)
s=2 19708 [4504, 11095]
(389) (486) (389)
s=3 28051 (6128, 13835]
(791) (741) (716)
s=4 37533 [7839, 16530]
(1299) (1071) (1145)

Asymptotic standard errors in parentheses. All amounts are in 1991 adult-equivalent
USS$. Data are for 1991, from the LIS data base.
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Rankings based on D®(z — z) for s = 1,2. Asymptotic standard errors in parentheses.
All amounts are in 1991 adult-equivalent US$. Data are for 1991, from the LIS data

base.

Table 3.

Poverty ranking of the US, Canada, and the Netherlands
with poverty line of half median income

s=1 5§=2
x Most | Medium | Least Most Medium | Least
Poverty | Poverty | Poverty |[Poverty | Poverty |[Poverty
USA CAN NL USA CAN NL
7000 | 0.012 0.0070 0 10.2 8.2 0
(0.001) | (0.0006) - (1.1) (0.8) -
USA NL CAN USA CAN NL
6000 | 0.020 0.012 0.0108 26.1 17.3 3.1
(0.001) | (0.002) | (0.0007)| (2.1) (1.4) (0.8)
USA NL CAN USA CAN NL
5000 | 0.030 0.021 0.016 50.0 30.4 18.8
(0.002) | (0.002) | (0.001) (3.4) (2.1) (2.5)
USA CAN NL USA CAN NL
4000 | 0.050 0.027 0.024 88.9 51.2 41.0
(0.002) | (0.001) | (0.002) (5.3) (3.0) (4.6)
USA CAN NL USA CAN NL
3000 | 0.077 0.041 0.028 152.1 84.2 67.4
(0.003) | (0.002) | (0.003) (7.7) (4.2) (6.8)
USA CAN NL USA CAN NL
2000 | 0.110 0.065 0.035 245 136.1 99.1
(0.004) | (0.002) | (0.003) (11) (5.8) (9.3)
USA CAN NL USA CAN NL
1000 | 0.144 0.088 0.045 372 211.6 139
(0.004) | (0.002) | (0.004) (14) (7.7) (12)
USA CAN NL USA CAN NL
0 0.181 0.116 0.067 534 312.8 194
(0.005) | (0.003) | (0.005) (18) (9.9) (15)
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