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1. Introduction

Although testing hypotheses is a central concern of econometrics, the distributions of
the most frequently used test statistics are known only asymptotically. Thus inference
on the basis of them can be risky. There are two approaches to solving this problem.
The first is to modify a test statistic analytically so that it approaches its asymptotic
distribution more rapidly, as in Attfield (1995), or to modify the critical values so that
the true rejection probability of the test approaches its nominal value more rapidly,
as in Rothenberg (1984). This approach often requires algebraic derivations that are
very far from trivial, and in many cases it seems to be infeasible.

The second approach, which is becoming popular because of the dramatic increase
in the speeds of computers in recent years, is to employ some form of bootstrap test.
The basic idea of bootstrap testing is to draw a large number of “bootstrap samples”
from a distribution which obeys the null hypothesis and is constructed in such a way
that the bootstrap samples, as far as possible, resemble the real sample. The test
statistics from the bootstrap samples can then be used to calculate a P value for the
observed test statistic. Beran (1986) and Hall and Titterington (1989) were among
the first papers to study bootstrap testing formally.

There has been some discussion of bootstrap testing methodology in the econometrics
literature. Notable papers include Horowitz (1994), who applies the bootstrap to
information matrix tests, and Hall and Horowitz (1996), in which bootstrap methods
are described for dynamic GMM models. These and other studies have generally
found that bootstrap tests are much more reliable than asymptotic tests. If the
sample size is n, the error in rejection probability committed by an asymptotic test
is, in general, of order n~'/2 for a one-tailed test and of order n~! for a two-tailed
test. Use of the bootstrap can reduce this order by a factor of n=1/2, n=1, or even
more; see Hall (1992) for a very full discussion, based on Edgeworth expansions, of

the extent to which asymptotic refinements are available in different contexts.

Even when it is known theoretically that the bootstrap provides refinements of a
given order, the size distortion of a bootstrap test may vary considerably according
to circumstances. We use the term “size distortion” here in the sense in which
econometricians would usually understand it, to mean the difference between the
nominal level of the test and its actual rejection probability. Since this terminology
is not standard outside econometrics, however, we will henceforth speak of the “error
in rejection probability,” or ERP, of a test. In this paper, we analyze the ERP of
bootstrap tests in terms of what we call “critical value functions” and “rejection
probability functions.” We show how the slope and curvature of these functions
determine the extent of the ERP of bootstrap tests. In the parametric case, graphs
of the functions can depict clearly those regions in the parameter space where the
bootstrap will behave more or less well. Thus inspection of such graphs can yield
valuable intuition concerning the performance of bootstrap tests.

Our theoretical framework treats all test statistics in approximate P value form. This
device allows us to abstract from the variety of possible asymptotic distributions that
test statistics may have, and thereby provides a single theoretical framework in which
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the determinants of the bootstrap refinements can be studied. This framework yields
two major results. First, it shows that extra refinements, known to be available in a
variety of specific cases that are not obviously related, are more generally available
if the bootstrapped test statistic is asymptotically independent of the bootstrap dis-
tribution. This can almost always be achieved in econometric applications. Second,
it provides a new way to estimate by simulation the ERP of bootstrap tests that
obey the asymptotic independence condition. This method requires the calculation
of only two test statistics per replication, and it is thus very much cheaper than doing
a Monte Carlo experiment in which every replication involves a bootstrap test.

In the next section, we explain our terminology and notation and introduce several
important concepts. The principal theoretical result of the paper is proved in Sec-
tion 3, and the implications of this result are explored in Section 4. A simulation
method for estimating the ERP of bootstrap tests is proposed in Section 5, and we
provide evidence that it can perform very well indeed.

2. Basic Concepts and Notation

In this paper, a model M will be a set of data-generating processes (DGPs) for one
or more dependent variables. By the term DGP we mean a complete stochastic
specification, with enough information that it provides a unique recipe for simulation
for any specified sample size. A fully parametric model is one for which all the
DGPs that belong to it are in one-one correspondence with the elements of a finite-
dimensional parameter space. When a model is not fully parametric, many DGPs
correspond to each point in the parameter space, differing with regard to things
like the distribution of the error terms. For instance, a regression model with normal
errors is fully parametric, while the model given by the same regression equation, but
with errors that are merely specified to be IID with mean zero and finite variance, is
not. A generic element, or DGP, of a model M will be denoted as p.

A test statistic 7, computed as a function of data generated by some DGP, is said to
be (asymptotically) pivotal for a model M if the (asymptotic) distribution of 7 is the
same for each DGP p € M. For M to represent the null hypothesis tested by 7, it
is usually necessary that 7 be asymptotically pivotal for M. Any statistic for which
the asymptotic distribution is known and the same for all p € M is automatically
asymptotically pivotal. The importance of pivotalness in bootstrap methodology has
been insisted on by many authors. Hall (1992) gives extensive bibliographical notes
on this point; see especially the ends of his Chapters 1 and 3.

In this paper, we deal only with statistics that can be approximated with error
at most O(n~2) by a smooth function of sample moments. This assumption puts
us in the framework of the “smooth function model” considered by Hall (1992).
Regularity conditions are not our main concern here, and so we choose to avoid
explicit reference to them by remaining throughout in this framework, in order to
rely on Hall’s regularity conditions.



Let the model M represent the null hypothesis we wish to test, and let 7 be a test
statistic that is asymptotically pivotal for M, where the test rejects for large values
of the statistic. We denote by 7 the realization of 7 calculated from data generated
by some unknown DGP pg. If pg satisfies the null hypothesis, that is, if pug € M, the
ideal P value for inference based on 7 is

p(7) = Pry, (1 > 7). (1)

The distribution of the random variable p(7), of which p(7) is a realization, is uniform
on [0, 1]. But, since g is unknown, we cannot compute (1). The “bootstrap P value”
p*(7) is the bootstrap estimate of p(7). It is obtained by replacing g in (1) by a
bootstrap DGP, fi. Thus

p*(7) = Pra(r =2 7). (2)

The bootstrap DGP may be either parametric or nonparametric. In the former case,
M must be a fully parametric model, and i belongs to M itself, being defined in
terms of estimates of the parameters of M. In the latter case, M need not be fully
parametric, and i will be based, at least in part, on some sort of empirical distribution
function, although it often requires parameter estimates as well. In either case, the
bootstrap DGP [i will depend on the data used to obtain 7. In practice, p*(7) usually
cannot be computed analytically. Instead, a large number of bootstrap samples is
drawn from fi, and the proportion of the bootstrap samples for which the bootstrap
statistic is no smaller than 7 is used to estimate p*(7).

If 7 is an exact pivot, it is well known that, in the case of the parametric bootstrap,
p*(7) = p(7). This follows immediately from the facts that g € M, and so satisfies
the null hypothesis, and that the distribution of 7 is invariant in M. When 7 is only
asymptotically pivotal, the distribution of 7 depends on p € M, but the asymptotic
distribution does not. Let this asymptotic distribution have CDF F. At nominal
level «, the test rejects if the asymptotic P value 1 — F(7) < a. We introduce
the “rejection probability function,” or RPF, as a measure of the true rejection
probability:

R(a,p) =Pr,(1—F(1) < a). (3)

This function gives the (true) rejection probability under p of a test at nominal
level a.. Clearly, it also depends on the sample size n, but it avoids notational clutter
to leave that dependence implicit. It can be seen that R(-,u) is the CDF of the
asymptotic P value under p. The ERP of the asymptotic test at nominal level « is
defined implicitly by the equation

R(a,p) = a+n""2r(a, p), (4)

where [ > 1 is defined so that r(«, ) will be O(1). Results discussed in Hall (1992)
imply that the value of [ will be different in different cases. In the case of a one-sided
test based on an asymptotically N(0, 1) statistic, [ = 1. In the case of a two-sided
test based on an asymptotically N(0,1) statistic and the case of an asymptotically
x? statistic, [ = 2.
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If each DGP p € M is fully characterized by a parameter vector 6, the rejection
probability function can be written as R(a, @). Suppose that a data set actually
generated by a DGP characterized by 6, yields estimates 6. Then the parametric
bootstrap DGP is characterized by 6. The probability of rejection by the asymptotic
test can be calculated under the DGPs corresponding to both 8 and 6y. From (3)
and (4), the difference between the two probabilities is

R(,0) — R(a,8p) = n~"?(r(a, 8) — r(a, 8)). (5)

If r is differentiable, it can be Taylor expanded around 6, to obtain

A~

R(,0) — R(v,00) = n="2 g (ar, 00) (0 — 6y), (6)

where rg(a, 8) is the vector of first derivatives of r(a, @) with respect to 8, evaluated
at 0. If 6 is root-n consistent, the right-hand side of (6) is of order n~(*+1)/2. Thus
the bootstrap approximation to the distribution of 7 is in error only at order n~(+1)/2
better than the error of the asymptotic distribution by a factor of n=1/2. To the best
of our knowledge, this analysis first appeared, in a more general form not limited to
the parametric bootstrap, in Beran (1988). See also Hall (1992).

The information contained in the function R(«, u) is also provided by the “critical
value function,” or CVF, Q(a, ), defined implicitly by the equation

Pr (7> Q(a,p) =a. (7)

Q(a, ) is thus the critical value for 7 which gives a rejection probability of « if the
DGP is p. The relation between the RPF R(«, 1) and the CVF Q(«, p) is

R(l - F(Q(av :u))nu) =, (8)

and the rejection region for the bootstrap test of nominal level « is

T2 Qo 1) (9)

Therefore, the rejection probability of the bootstrap test under any DGP p is the
probability of the event (9) under pu.

In the parametric case, a DGP u € M is completely characterized by a parameter
vector 0, and so we can, at least in principle, graph the CVF as a function of 6. As
an illustration, Figure 1 shows the CVF, for a = .05, for a hypothetical nonpivotal
test statistic, asymptotically distributed as the absolute value of N (0, 1), for a model
the DGPs of which are characterized by a single parameter 6. It follows from (9)
that the rejection region of the bootstrap test can be defined in the space of 6 and T,
as the region above the graph of the CVF.

The rectangle above the horizontal line marked Q(.05,0) in the figure shows all
(7,0) pairs that would lead to rejection at nominal level .05 when 6y = 0 if the
ideal P value (1) could be used. In contrast, the area above the CVF shows all
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pairs that actually will lead to rejection with a bootstrap test. The effect of the
difference between the two rejection regions on the performance of the bootstrap test
depends on the joint distribution of 7 and 6. For comparison, the rectangle above
the dotted line shows all pairs that lead to rejection with the asymptotic critical
value Q*°(.05) = 1.96. Clearly, the bootstrap test will work much better than the
asymptotic test.

From Figure 1, we see that, when 6y = 0, the bootstrap test may either overreject
or underreject. For values of 0 reasonably near 0, it will overreject when 6 < 0. For
those values of #, the CVF is below Q(.05,0), and the bootstrap critical value will
consequently be too small. Similarly, the bootstrap test will underreject whenever
6>0.1f0 is approximately unbiased and not very variable, these two types of errors
should tend to offset each other, since the CVF is approximately linear near 6§ = 0.
In contrast, near the minimum #; and the maximum 65, all the errors will be of the
same sign. Thus we would expect the bootstrap test to underreject when 6y = 64
and to overreject when 6y = 0,.

Figure 2 graphs the RPF R(.05,0) for exactly the same one-parameter case as the
CVF in Figure 1. Both functions evidently convey essentially the same information.

3. The Rejection Probabilities of Bootstrap Tests

In this section, we obtain an approximate expression for the ERP of bootstrap tests.
The expression we obtain is useful for at least three reasons. First, it provides a
clear intuitive explanation of the source of the ERP, based on the joint distribution
of the test statistic 7 and the bootstrap DGP ji. Second, it shows that an additional
asymptotic refinement that is known to exist for certain specific cases, beyond the
usual one in (6) noted by Beran, is available more generally. Third, it allows us
to develop a relatively inexpensive simulation method for estimating the ERP of
bootstrap tests.

It is convenient for our analysis to replace the statistic 7 by the asymptotic P value
1 — F (1), which we henceforth denote simply by 7. The sign of the inequality in (7)
must be changed, because one rejects when a P value is less, rather than greater, than
a given value. For statistics 7 that are asymptotic P values, the CVF is defined by

Pr, (7 < Qa, p)) = @ (10)

rather than by (7). Clearly, Q(«, ) is now the « quantile of 7 under p. Similarly,
(3) simplifies to R(c, u) = Pr, (7 < «), and (8) reduces to

R(Q(%H)aﬂ) = Q, (11)

from which it is clear that Q(«, ) is the inverse function of R(«, u) for given pu.
Since both R and @ are increasing in their first arguments, (11) implies that
Q(R(a, p), ) = a. Analogously to (4), we have

Q(a’ :u) =+ n_l/QQ(a> :U“)7 (12)
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with the function ¢ of order unity. The [ in (12) is the same as the [ in (4).

Equations like (4) and (12) do not look very much like the Edgeworth expansions
about the standard normal density used in, among others, Hall and Titterington
(1989) and Hall (1992). They are, however, fundamentally equivalent, the differences
being due to our use of statistics that are asymptotically uniform on [0, 1], rather
than standard normal. The uniform density turns out to be better adapted to the
study of ERP.

The bootstrap critical value for 7 at nominal level a is Q(«, 1), a random variable
that is asymptotically nonrandom and equal to a. For given «, it is convenient to
define a new random variable ~, of order unity as n — oo, as follows:

Q(an&’) = Q(Oé, MO) + n—k/2,y7 (13)

where k is chosen to make (13) true. For the parametric bootstrap with root-n
consistent estimates, Beran’s argument in the last section implies that £ = [ + 1. This
is also true for the nonparametric bootstrap whenever Hall’s Edgeworth expansion
theory based on the smooth function model applies. In both these cases, (6) shows
that R(a, 1) — R(a, p1o), and so also Q(a, 1) — Q(av, o), is O(n~U+1/2). Thus, since
[ > 1, we can be confident that k& > 2 in most cases of interest.

The RPF R(-, up) is the marginal CDF of 7. In order to calculate the rejection
probability of the bootstrap test under the DGP g, we need the joint distribution
under po of 7 and 7. Thus, let g(vy | 7) be the density of v conditional on 7 under py.
With this specification, we can compute the bootstrap rejection probability as the
probability under pg that 7 < Q(a, f1). By (13), this is

00 Q+n7k/27
/_ dy / dR(r) (v | 7), (14)

where, for ease of notation, we have set Q = Q(a, po) and R(1) = R(T, 10)-

The integral over 7 in (14) can be split into two parts, as follows:

/OQdR(T) /_o; dvg(”yITH/_o; d,y/on’“m drR(Q+7)g(v|Q+7),  (15)

where R’ is the derivative of R(7). Because g is a density, the integral over « in the
first term of (15) equals 1, and so the whole first term equals «, by (11). The ERP is
therefore given by the second term in (15). By (4), R'(Q +7) = 1+ O(n~%/2). Thus,
if g is smooth enough, we may write the second term of (15) as

we [ "ty (g(y | @) + O H)) (1 + O(m/?))

— 00

=2 [ gy a)+ O 107, (16)

— 00
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Expression (16) is the ERP of the bootstrap test. The first term is O(n~*/2), in
accord with Beran’s (1988) analysis for asymptotic pivots. We now go beyond his
analysis by exploiting the explicit expression in (16) for the leading-order distortion.

The leading-order term in (16) is the expectation, conditional on 7 = «, of Q(«, i) —
Q(a, po). Thus it is the bias, conditional on 7 = «, of the bootstrap critical value for
nominal level a. When this bias is nonzero and of order n=%/2, it is responsible for
the leading-order ERP of the bootstrap test. But if it is zero or of lower order, the
ERP is of lower order, because, in that case, those fi which overestimate the critical
value will on average be balanced to leading order by those { which underestimate
it. Specifically, if .

/ dyyg(y]a)=0n"?),

for i < k, the distortion (16) is of order n~(k+9/2,

The actual value of k in specific testing situations can often be found in the existing
literature on bootstrap confidence intervals, because the limits of these intervals are
defined in terms of quantiles of the bootstrap distribution, and that is precisely what
Q(a, 1) is. For instance, in Section 3.6 of Hall (1992), it is shown that, for a symmetric
confidence interval based on an asymptotically standard normal statistic, the exact
and bootstrap critical values differ only at order n=3/2. In our terms, k = 3. Hall
goes on to show that the coverage error of a bootstrap confidence interval is of still
lower order, n~2 in general. Examination of Hall’s derivation of this result reveals
that the additional refinement is due, as (16) would suggest, precisely to the fact
that the bias, or expectation of the difference between the true and bootstrap critical
values, is of lower order than the difference itself.

In fact, the interpretation of the leading-order term of (16) as a conditional expecta-
tion makes it obvious why it vanishes for a symmetric two-tailed test. The condition
that 7 = « corresponds to two possibilities for the underlying asymptotically stan-
dard normal statistic: it may be equal to either the positive critical value or its
negative. Under the null, because the test is symmetric, these events are equally
probable to leading order. If v and the asymptotically standard normal statistic
have an approximate bivariate normal distribution, as they do in Hall’s demonstra-
tion, then the expectations of v conditional on the two critical values, positive and
negative, are equal and opposite in sign. Thus the expectation of v conditional on
T = « vanishes to leading order.

4. A Further Refinement

In general, without any requirement of a symmetric two-sided test, the first term
in (16) will vanish to leading order if a further condition is satisfied. This condition
is that v and 7 should be asymptotically independent.

The asymptotic independence of v and 7 can often be achieved by using the fact that
parameter estimates under the null are asymptotically independent of the statistics
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associated with tests of that null in a wide variety of circumstances. If 0 is an ex-
tremum estimator that satisfies first-order conditions in the interior of the parameter
space of the null hypothesis, the vector n'/ 2(9 — 6) will be asymptotically indepen-
dent of any classical test statistic. For the case of the classical test statistics based on
maximum likelihood estimation, a detailed proof of this may be found in Davidson
and MacKinnon (1987). The proof can be extended in regular cases to NLS, GMM,
and other forms of extremum estimation.

Thus, for the parametric bootstrap, the condition of asymptotic independence of 7
and v will always be satisfied, provided the parameters are estimated under the null
and have the usual asymptotic properties. This is because Q(«, f1), and hence 7, is a
smooth function of the parameter estimates, and is thus asymptotically independent
of the test statistic 7. This argument clearly also applies to cases in which only a
conditional model for the dependent variable is fully parametric.

Asymptotic independence can often be achieved with little trouble for the nonpara-
metric bootstrap as well. As one example, consider bootstrapping a test statistic
in a linear regression model that includes a constant term by resampling from the
residuals. Here, in order to achieve asymptotic independence, the bootstrap DGP
would be based on estimating the model under the null. The bootstrap regression
function would be given by the fitted values, which, as before, are asymptotically
independent of any classical test statistic, and the bootstrap error terms would be
independent drawings from the empirical distribution of the residuals, u;. Now con-
sider a t statistic on a variable not included under the null. Asymptotically, it will
be a linear combination of the residuals, and so not independent of the bootstrap
distribution. To leading order asymptotically, it will have the form

r=n"1/2 thut, where th =0 and fo =1. (17)
t=1 t=1 t=1

The quantiles of the bootstrap distribution are determined by the empirical distri-
bution of the residuals. Consider the asymptotic covariance of 7 and the empirical
distribution function evaluated at z. It is

nler;OE<n_1/2 ixtut, n~1/2 §<I(Ut <z)—E(I(w< z)))), (18)

where I(-) denotes the indicator function, which is equal to 1 when its argument is
true and 0 otherwise. Since the residuals are asymptotically IID, (18) becomes

lim n~* thE(ut (I(ut < z)— E(I(ut < z)))) =a lim n7! th =0,
t=1 t=1

where a = E(uy(I(us < z) — E(I(u; < 2)))) is independent of ¢. Since both 7 and
the empirical CDF are asymptotically normal, they are asymptotically independent
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because their asymptotic covariance is zero. This kind of result can be obtained much
more generally, of course.

Suppose now that v and 7 are asymptotically independent. Then the conditional
density of v becomes

gy | 7) =g (L+n2f(y, 7)), (19)

where ¢(7) is the asymptotic marginal density of +, and j > 1 is chosen so that
f(v,7) is of order unity as n — oo.

For any valid bootstrap procedure, g(«, 1) must be a consistent estimator of ¢(a, o),
so that

/OO dyvg(v) =0,

— o0

for otherwise ¢(a, i) would be asymptotically biased. Then (16) becomes

n(’”jw/ dy v 9(7) (v, @) + O(n~ FH+D/2), (20)

— o0

The interpretation of (20) is the same as that of (16). The first term is the bias,
conditional on 7 = «, of the bootstrap critical value at nominal level a. When k = 2
and j = 1, this term will be O(n=3/2).

Under asymptotic independence of the statistic 7 and the bootstrap DGP ji, the
extra refinement seen in (20) can be derived within the context of Hall’s Edgeworth
expansion approach, although with considerably more difficulty than that involved
in deriving (20); see the Appendix.

5. Estimating the ERP of Bootstrap Tests

In the study of the performance of bootstrap tests, Monte Carlo experiments play
a vital role. However, such experiments can be extremely time-consuming, because
each replication requires the calculation of B+1 test statistics if B bootstrap samples
are used. In this section, we show that, when 7 and [i are asymptotically independent,
it is possible to estimate the ERP of a bootstrap test by calculating only two statistics
per replication.

With asymptotic independence, the first term in (16) is, to leading order, just the
unconditional expectation of Q(«, 1) — Q(a, po). From (4) and (11), it follows that,
to order n~/2,

Q(Oé, /l) - Q(Oé, ,LLO) = R(Oé, MO) - R(avﬂ) (21)

The unconditional expectation of this is approximately equal to the ERP when «
is the nominal level of the asymptotic test. However, since the nominal level of
an asymptotic test is often far from its actual rejection probability, it is of greater
interest to study the ERP when « is the actual rejection probability. To do so, we
need to replace « in (21) by Q(a, p0), because, by (10), Q(«, 1) is the critical value
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that yields a rejection probability of a.. Thus, by (11), the ERP of the bootstrap test
is approximately equal to

By (R(QUav o). 10) = R(Q(e po), 1) = @ = By (R(Q, o). 1) (22)

Now consider a random variable which can be simulated as follows. First, a random
bootstrap DGP fi is drawn from p. Then the random variable is obtained by drawing
a statistic 7 from fi. The CDF of this variable evaluated at « is

Eu (Pra(t < @) = Eu (R(a, f1). (23)

This suggests that we can estimate (22) as follows. For each of M replications indexed
by m, draw a sample from pg. Use this sample to compute 7, and the bootstrap
DGP fi,,. Now draw another sample from fi,,, and use this second sample to com-
pute 7,.. In this way, 7, is by construction a drawing from the distribution (23),
and 7, is a drawing from the distribution with CDF R(-, up). Thus we can esti-
mate Q(a, po) as the a quantile of the 7,,, and then estimate E,,, (R(Q(a,,uo),/l))

as the proportion of the 7;}, that are smaller than the estimate of Q(a, o).

Let the estimate of E,, (R(Q(c, o), ft)) be denoted b. Then, by (22), the estimate
of the bootstrap ERP is o — b, and the estimate of the rejection probability of the
bootstrap test is 2a — b. For the last estimate to lie between 0 and 1, it is necessary
that 2a — 1 < b < 2a. For a < 1/2, the first inequality is automatically satisfied. If
the second is not, it means that more than twice as many of the 7, as of the 7,,, are
smaller than the estimate of Q(c, o). In such a case, the bootstrap ERP is so great
that the present method is likely to be inapplicable.

We have investigated the performance of this Monte Carlo procedure in the context
of three different bootstrap tests, both parametric and nonparametric. In all three
cases, it worked remarkably well. As an illustration, we report the results of one set
of experiments here. These experiments concern a Wald test for linear restrictions
on the parameters of a tobit model. There are 10 regressors, including a constant
term, and 7 restrictions. See Davidson and MacKinnon (1999) for discussion of the
model and the test statistic. The number of restrictions is relatively large, because
the performance of the bootstrap and asymptotic tests deteriorates as this number
increases, and we wanted to investigate a case in which the bootstrap test does not
work perfectly.

The results of our experiments are summarized in Figure 3. We generated 1,000,000
samples for each of n = 40,42,44,...,100 and calculated the rejection probabilities
for the asymptotic test at nominal level .05. For each sample, we also calculated 7.7,
and used it to estimate the rejection probability for the bootstrap test, as described
above. The number of replications is very large because we did not want the figure
to suffer from too much experimental error. Sample sizes less than 40 were not
investigated to avoid too many replications for which ML estimates of the tobit
model do not exist. The rejection probabilities, actual in the case of the asymptotic
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test and approximate in the case of the bootstrap test, are shown respectively as
solid and dotted curves. As the theory suggests, the bootstrap test works very much
better than the asymptotic test for this example.

It would have been very costly indeed to investigate the actual performance of
bootstrap tests for as many sample sizes, or as many replications, as we used
to estimate its performance based on (22). We contented ourselves with exper-
iments of 500,000 replications for tests based on 99 bootstrap samples, for n =
40, 50,60, ...,100. The results are displayed as large dots in Figure 3. These seven
large dots required far more computing time than the two curves. It can be seen that
the estimates of the ERP of the bootstrap test based on (22) are almost identical to
those from the brute-force estimates based on actual bootstrapping; any differences
can be attributed to experimental error.

These results appear to be extremely promising. It would probably be unwise to
conduct a Monte Carlo experiment on the performance of a bootstrap test without
ever estimating the latter directly. However, it will often be possible to use the
approximate method proposed here to investigate most cases, with only a few brute
force experiments to verify that the approximate results are valid. It also seems
plausible that (22) can be made use of in practice to reduce the ERP of bootstrap
tests whenever 7 and i are asymptotically independent. This conjecture is the subject
of ongoing research.

6. Summary and Conclusion

In this paper, we have provided a simple theoretical framework for understanding a
number of existing results on the higher-order refinements provided by the bootstrap.
It is well known that, when an asymptotically pivotal statistic is used for testing, the
bootstrap test yields a refinement of at least order n=1/2 over the asymptotic test.
That further refinements, beyond n~'/2, are sometimes available, as in the case of
tests that are asymptotically chi-squared, is also known, but the source of these
refinements is not immediately obvious. In Section 3, we explained precisely where
they come from.

Our analysis shows that the extra refinement, which in most cases will be of or-
der n=1/2, is not limited to specific cases, but is quite generally available if the test
statistic is asymptotically independent of the bootstrap DGP. This condition is satis-
fied for the parametric bootstrap if the parameter estimates are extremum estimators
obtained under the null, and in many cases for the nonparametric bootstrap as well.
Together with existing results, this new result suggests that bootstrap tests can, in
many circumstances, be more accurate than asymptotic tests by a full order of n=".

The asymptotic independence condition, when it is satisfied, makes it possible to
estimate the ERP of bootstrap tests by computing only two test statistics on each
replication, instead of the B + 1 test statistics that would be needed to calculate a
bootstrap P value. This result is potentially of great utility for Monte Carlo studies
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of the bootstrap. Although we do not claim that it will work well in all cases, we
have demonstrated that it can work very well indeed in practice.
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Appendix

In this appendix, we demonstrate that the extra refinement seen in (20) can also be
obtained within Hall’s Edgeworth expansion approach. We consider a simple model
and two different parametric bootstrap procedures, one for which the test statistic
and the bootstrap DGP are asymptotically independent, and another for which they
are not. In accord with the results from our approach, we find that the order of the
bootstrap ERP is smaller in the former case.

The model has just two parameters, 61 and 0>, which can be estimated by maximum
likelihood. The test statistic is a Wald test of the hypothesis that 8, = 0, computed
as an asymptotic ¢ statistic. In order not to be confused by the extra refinement given
by a two-tailed test, we consider a one-tailed test against the alternative that 6, < 0.
We consider two possible parametric bootstraps. For the first, the bootstrap DGP
is the DGP with parameters (61,0), where 6y is the ML estimate of 6; subject to
the constraint #; = 0. By standard ML theory, 0 is asymptotically independent
of any classical test statistic for the hypothesis that §; = 0. The second bootstrap
DGP uses the parameters (él, 0), where 0 is the unconstrained ML estimate from a
procedure in which 6; and 65 are estimated jointly. The Wald statistic, based on 05,
will not, in general, be asymptotically independent of this second bootstrap DGP.

Without loss of generality, we suppose that the true value of #; is zero. The ML esti-
mator is asymptotically normal, and so we can represent the asymptotic distribution
of n'/2(#1,0,) as bivariate normal, with mean zero, and covariance matrix

2
09 pPO102
2 )
PC102 g5

of order unity as n — oo. Then, by standard results on constrained ML estimation,
we have that, asymptotically,

n1/2¢§1 = n1/2é1 - ﬂ7?,1/2@2. (Al)
02

In what follows, we ignore the fact that o1, o2, and p will usually have to be esti-
mated, since this makes no difference asymptotically. Similarly, the Wald statistic is
asymptotically just n'/20; /0.

For tests based on asymptotically standard normal statistics, equation (3.24) of Hall
(1992) implies that

Do — Vo =n" 2 (411(2a) — q11(2a)) + O(n=3/?), (A.2)

where v, and 9, are the a quantiles of the distribution of the test statistic when it is
generated by the true DGP and by the bootstrap DGP respectively. The functions
q11 and ¢11 are even polynomials of degree at most 2, and their argument z, is the
a quantile of the standard normal distribution. The coefficients of the polynomials ¢4
and ¢11 are smooth functions of the low-order moments of the test statistic under the

— 13 —



true and bootstrap DGPs, respectively. For the parametric bootstrap, these low-order
moments are functions of the parameters of the DGP, and so, since the ML estimates
of the parameters are root-n consistent, we have that ¢i1(z) — qi1(2) = O(n=/?),
from which it follows that 6, — v, = O(n™1).

We used Hall’s notation in (A.2). It is more convenient to write the polynomials
as explicit functions of the parameter 6; that characterizes the DGP. Thus we write
q(61) in place of ¢11(z4) and q(él) in place of ¢11(24 ), where 0, denotes either 01 or él,
depending on which bootstrap is used. For convenience, we drop the z, argument.
It follows that

(o — va) = n?(q(01) — q(0)) + O(n /%) = ¢'(0)n'/?6: + O(n™'/?),  (A.3)
where ¢’ is the derivative of ¢ with respect to . Note that, in our notation,

Q(a, pg) = P(vy) and Q(a, ft) = P(0,),

where ® is the standard normal CDF.

We may now make use of the tool for calculating the ERP in the conventional ap-
proach, which is Proposition 3.1 in Hall (1992). This result is expressed in terms of
the coverage error of a confidence interval. After some simplification made possible
by the simplicity of the model under consideration, we find that, for a one-sided
interval with nominal coverage a of the sort Hall calls J;, which is what we need
here, the coverage error is —n~ ¢ (24 )@a2a, Where ¢ is the standard normal density,
and a,, is defined to leading order as minus the covariance of the test statistic and
expression (A.3). For the bootstrap that uses 0, we obtain

0 R 1
gy = —E(nl/2 = q'(())nl/291> = ——q(0)po1o2 = —po1¢'(0),
09 02

while, for the bootstrap that uses 61, we find from (A.1) that

A

Ao = —E(n1/20—2 q'(O)nl/Qél) = —iq'(()) (,00102 — @ag) = 0.
02

g2 02

This last result is the additional refinement due to asymptotic independence. If one
wishes to establish a closer correspondence with the approach of this paper, it should
be noted that the nominal coverage of a corresponds to a test of nominal level 1 — «,
and that a negative coverage error corresponds to a positive ERP.
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