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Abstract

Associated with every popular nonlinear estimation method is at least one “artifi-
cial” linear regression. We define an artificial regression in terms of three conditions
that it must satisfy. Then we show how artificial regressions can be useful for numer-
ical optimization, testing hypotheses, and computing parameter estimates. Several
existing artificial regressions are discussed and are shown to satisfy the defining con-
ditions, and a new artificial regression for regression models with heteroskedasticity
of unknown form is introduced.
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1. Introduction

All popular nonlinear estimation methods, including nonlinear least squares (NLS),
maximum likelihood (ML), and the generalized method of moments (GMM), yield
estimators which are asymptotically linear. Provided the sample size is large enough,
the behavior of these nonlinear estimators in the neighborhood of the true parameter
values closely resembles the behavior of the ordinary least squares (OLS) estimator.
A particularly illuminating way to see the relationship between any nonlinear esti-
mation method and OLS is to formulate the artificial regression that corresponds
to the nonlinear estimator.

An artificial regression is a linear regression in which the regressand and regressors
are constructed as functions of the data and parameters of the nonlinear model that
is really of interest. In addition to helping us understand the asymptotic properties
of nonlinear estimators, artificial regressions are often extremely useful as calculating
devices. Among other things, they can be used to estimate covariance matrices, as
key ingredients of nonlinear optimization methods, to compute one-step efficient
estimators, and to calculate test statistics.

In the next section, we discuss the defining properties of an artificial regression. In
the subsequent section, we introduce the Gauss-Newton regression, which is proba-
bly the most popular artificial regression. Then, in Section 4, we illustrate a number
of uses of artificial regressions, using the Gauss-Newton regression as an example.
In Section 5, we develop the most important use of artificial regressions, namely,
hypothesis testing. We go beyond the Gauss-Newton regression in Sections 6 and 7,
in which we introduce two quite generally applicable artificial regressions, one for
models estimated by maximum likelihood, and one for models estimated by the
generalized method of moments. Section 8 shows how artificial regressions may be
modified to take account of the presence of heteroskedasticity of unknown form.
Then, in Sections 9 and 10, we discuss double-length regressions and artificial re-
gressions for binary response models, respectively.

2. The Concept of an Artificial Regression

Consider a fully parametric, nonlinear model that is characterized by a parameter
vector θ which belongs to a parameter space Θ ⊆ Rk and which can be estimated
by minimizing a criterion function Q(θ) using n observations. In the case of a
nonlinear regression model estimated by nonlinear least squares, Q(θ) would be one
half the sum of squared residuals, and in the case of a model estimated by maximum
likelihood, Q(θ) would be minus the loglikelihood function.

If an artificial regression exists for such a model, it always involves two things: a
regressand, r(θ), and a matrix of regressors, R(θ). The number of regressors for
the artificial regression is equal to k, the number of parameters. The number of
“observations” for the artificial regression is often equal to n, but it may also be
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equal to a small integer, such as 2 or 3, times n. We can write a generic artificial
regression as

r(θ) = R(θ)b + residuals, (1)

where b is a k--vector of coefficients. “Residuals” is used here as a neutral term to
avoid any implication that (1) is a statistical model. The regressand and regressors
in (1) can be evaluated at any point θ ∈ Θ, and the properties of the artificial
regression will depend on the point at which they are evaluated. In many cases, we
will want to evaluate (1) at a vector of estimates θ́ that is root-n consistent. This
means that, if the true parameter vector is θ0 ∈ Θ, then θ́ approaches θ0 at a rate
proportional to n−1/2. One such vector that is of particular interest is θ̂, the vector
of estimates which minimizes the criterion function Q(θ).

For (1) to constitute an artificial regression, the vector r(θ) and the matrix R(θ)
must satisfy certain defining properties. These may be stated in a variety of ways,
which depend on the class of models to which the artificial regression is intended to
apply. For the purposes of this paper, we will say that (1) is an artificial regression
if it satisfies the following three conditions:

(i) The estimator θ̂ is defined, uniquely in a neighborhood in Θ, by the k equations
R(θ̂)>r(θ̂) = 0;

(ii) for any root-n consistent θ́, a consistent estimate of Var(plim n1/2(θ̂ − θ0)) is
given by the inverse of n−1R(θ́)>R(θ́). Formally,

Var
(

plim
n→∞

n1/2(θ̂ − θ0)
)

= plim
n→∞

(
n−1R>(θ́)R(θ́)

)−1;

(iii) if b́ denotes the vector of estimates from the artificial regression (1) with re-
gressand and regressors evaluated at θ́, then

θ́ + b́ = θ̂ + op(n−1/2).

Many artificial regressions actually satisfy a stronger version of condition (i):

(i′) g(θ) = −R>(θ)r(θ),

where g(θ) denotes the gradient of the criterion function Q(θ). Clearly, condition (i′)
implies condition (i), but not vice versa. The minus sign in (i′) is due to the arbitrary
choice that the estimator is defined by minimizing Q(θ) rather than maximizing it.

Condition (ii) has been written in a particularly simple form, and some nonstandard
artificial regressions do not actually satisfy it. However, as we will see, this does not
prevent them from having essentially the same properties as artificial regressions
that do satisfy it.

Condition (iii), which is perhaps the most interesting of the three conditions, will
be referred to as the one-step property. It says that, if we take one step from an
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initial consistent estimator θ́, where the step is given by the coefficients b́ from the
artificial regression, we will obtain an estimator that is asymptotically equivalent
to θ̂.

The implications of these three conditions will become clearer when we study spe-
cific artificial regressions in the remainder of this paper. These conditions differ
substantially from the conditions used to define an artificial regression in David-
son and MacKinnon (1990), because that paper was concerned solely with artificial
regressions for models estimated by maximum likelihood.

3. The Gauss-Newton Regression

Associated with every nonlinear regression model is a somewhat nonstandard arti-
ficial regression which is probably more widely used than any other. Consider the
univariate, nonlinear regression model

yt = xt(β) + ut, ut ∼ IID(0, σ2), t = 1, . . . , n, (2)

where yt is the tth observation on the dependent variable, and β is a k--vector of
parameters to be estimated. The scalar function xt(β) is a nonlinear regression
function. It determines the mean value of yt as a function of unknown parameters β
and, usually, of explanatory variables, which may include lagged dependent vari-
ables. The explanatory variables are not shown explicitly in (2), but the t subscript
on xt(β) reminds us that they are present. The model (2) may also be written as

y = x(β) + u, u ∼ IID(0, σ2I), (3)

where y is an n--vector with typical element yt, and x(β) is an n--vector of which
the tth element is xt(β).

The nonlinear least squares (NLS) estimator β̂ for model (3) minimizes the sum of
squared residuals. It is convenient to use for the criterion function to be minimized
this sum divided by 2. Thus we define

Q(β) = 1−
2

(
y − x(β)

)>(y − x(β)
)
. (4)

The Gauss-Newton regression can be derived as an approximation to Newton’s
Method for the minimization of Q(β). In this case, Newton’s Method consists of
the following iterative procedure. One starts from some suitably chosen starting
value, β(0). At step m of the procedure, β(m) is updated by the formula

β(m+1) = β(m) −H−1
(m)g(m),

where the k×1 vector g(m) and the k×k matrix H(m) are, respectively, the gradient
and the Hessian of Q(β) with respect to β, evaluated at β(m). For general β, we
have

g(β) = −X>(β)
(
y − x(β)

)
,
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where the matrix X(β) is an n× k matrix with tith element the derivative of xt(β)
with respect to βi, the ith component of β. A typical element of the Hessian H(β) is

Hij(β) = −
n∑

t=1

((
yt − xt(β)

)∂Xti(β)
∂βj

−Xti(β)Xtj(β)
)
, i, j = 1, . . . , k. (5)

The Gauss-Newton procedure is one of the set of so-called quasi-Newton procedures,
in which the exact Hessian is replaced by an approximation. Here, only the second
term in (5) is used, so that the H(β) of Newton’s method is replaced by the matrix
X>(β)X(β). Thus the Gauss-Newton updating formula is

β(m+1) = β(m) +
(
X>

(m)X(m)

)−1
X>

(m)

(
y − x(m)

)
, (6)

where we write X(m) = X(β(m)) and x(m) = x(β(m)). The updating term on the
right-hand side of (6) is the set of OLS parameter estimates from the Gauss-Newton
regression, or GNR,

y − x(β) = X(β)b + residuals, (7)

where the variables r(β) ≡ y − x(β) and R(β) ≡ X(β) are evaluated at β(m).
Notice that there is no regressor in (7) corresponding to the parameter σ2, because
the criterion function Q(β) does not depend on σ2. This is one of the features of
the GNR that makes it a nonstandard artificial regression.

The GNR is clearly a linearization of the nonlinear regression model (3) around the
point β. In the special case in which the original model is linear, x(β) = Xβ, where
X is the matrix of independent variables. Since X(β) is equal to X for all β in
this special case, the GNR will simply be a regression of the vector y −Xβ on the
matrix X.

An example is provided by the nonlinear regression model

yt = β1Z
β2
t1 Z1−β2

t2 + ut, ut ∼ IID(0, σ2), (8)

where Zt1 and Zt2 are independent variables. The regression function here is non-
linear and has the form of a Cobb-Douglas production function. In many cases, of
course, it would be reasonable to assume that the error term is multiplicative, and
it would then be possible to take logarithms of both sides and use ordinary least
squares. But if we wish to estimate (8) as it stands, we must use nonlinear least
squares. The GNR that corresponds to (8) is

yt − β1Z
β2
t1 Z1−β2

t2 = b1Z
β2
t1 Z1−β2

t2 + b2β1Zt2

(
Zt1

Zt2

)β2

log
(

Zt1

Zt2

)
+ residuals.

The regressand is yt minus the regression function, the first regressor is the deriva-
tive of the regression function with respect to β1, and the second regressor is the
derivative of the regression function with respect to β2
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Now consider the defining conditions of an artificial regression. We have

R>(θ)r(θ) = X>(β)
(
y − x(β)

)
, (9)

which is just minus the gradient of Q(β). Thus condition (i′) is satisfied.

Next, consider condition (iii). Let β́ denote a vector of initial estimates, which are
assumed to be root-n consistent. The GNR (7) evaluated at these estimates is

y − x́ = X́b + residuals,

where x́ ≡ x(β́) and X́ ≡ X(β́). The estimate of b from this regression is

b́ = (X́>X́)−1X́>(y − x́). (10)

The one-step efficient estimator is then defined to be

β̀ ≡ β́ + b́. (11)

By Taylor expanding the expression n−1/2X́>(y − x́) around β = β0, where β0

is the true parameter vector, and using standard asymptotic arguments, it can be
shown that, to leading order,

n−1/2X́>(y − x́) = n−1/2X0
>u− n−1X0

>X0 n1/2(β́ − β0),

where X0 ≡ X(β0). This relation can be solved to yield

n1/2(β́ − β0) = (n−1X0
>X0)−1

(
n−1/2X0

>u− n−1/2X́>(y − x́)
)
. (12)

Now it is a standard result that, asymptotically,

n1/2(β̂ − β0) = (n−1X0
>X0)−1(n−1/2X0

>u); (13)

see, for example, Davidson and MacKinnon (1993, Section 5.4). By (10), the second
term on the right-hand side of (12) is asymptotically equivalent to −n1/2b́. Thus
(12) implies that

n1/2(β́ − β0) = n1/2(β̂ − β0)− n1/2b́.

Rearranging this and using the definition (11), we see that, to leading order asymp-
totically,

n1/2(β̀ − β) = n1/2(β́ + b́− β0) = n1/2(β̂ − β0).

In other words, after both are centered and multiplied by n1/2, the one-step estimator
β̀ and the NLS estimator β̂ tend to the same random variable asymptotically. This
is just another way of writing condition (iii) for model (3).

Finally consider condition (ii). Since X(β) plays the role of R(θ), we see that

1−
n
R>(θ)R(θ) = 1−

n
X>(β)X(β). (14)
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If the right-hand side of (14) is evaluated at any root-n consistent estimator β́,
it must tend to the same probability limit as n−1X0

>X0. It is a standard result,
following straightforwardly from (13), that, if β̂ denotes the NLS estimator for the
model (3), then

lim
n→∞

Var
(
n1/2(β̂ − β0)

)
= σ2

0 plim
n→∞

(n−1X0
>X0)−1, (15)

where σ2
0 is the true variance of the error terms; see, for example, Davidson and

MacKinnon (1993, Chapter 5). Thus the GNR would satisfy condition (ii) except
that there is a factor of σ2

0 missing. However, this factor is automatically supplied
by the regression package. The estimated covariance matrix will be

V̂ar(b́) = ś2(X́>X́)−1, (16)

where ś2 = SSR/(n − k) is the estimate of σ2 from the artificial regression. It is
not hard to show that ś2 estimates σ2

0 consistently, and so it is clear from (15) that
(16) provides a reasonable way to estimate the covariance matrix of β̂.

It is easy to modify the GNR so that it actually satisfies condition (ii). We just
need to divide both the regressand and the regressors by s, the standard error from
the original, nonlinear regression. When this is done, (14) becomes

1−
n
R>(θ)R(θ) =

1
ns2

X>(β)X(β),

and condition (ii) is seen to be satisfied. However, there is rarely any reason to do
this in practice.

Although the GNR is the most commonly encountered artificial regression, it differs
from most artificial regressions in one key respect: There is one parameter, σ2, for
which there is no regressor. This happens because the criterion function, Q(β),
depends only on β. The GNR therefore has only as many regressors as β has
components. This feature of the GNR is responsible for the fact that it does not
quite satisfy condition (ii). The fact that Q(β) does not depend on σ2 also causes
the asymptotic covariance matrix to be block diagonal between the k×k block that
corresponds to β and the 1× 1 block that corresponds to σ2.

4. Uses of the GNR

The GNR, like other artificial regressions, has several uses, depending on the par-
ameter values at which the regressand and regressors are evaluated. If we evaluate
them at β̂, the vector of NLS parameter estimates, regression (7) becomes

y − x̂ = X̂b + residuals, (17)
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where x̂ ≡ x(β̂) and X̂ ≡ X(β̂). By condition (i), which follows from the first-order
conditions for NLS estimation, the OLS estimate b̂ from this regression is a zero
vector. In consequence, the explained sum of squares, or ESS, from regression (17)
will be 0, and the SSR will be equal to

‖y − x̂‖2 = (y − x̂)>(y − x̂),

which is the SSR from the original, nonlinear regression.

Although it may seem curious to run an artificial regression all the coefficients of
which are known in advance to be zero, there can be two very good reasons for doing
so. The first reason is to check that the vector β̂ reported by a program for NLS
estimation really does satisfy the first-order conditions. Computer programs for cal-
culating NLS estimates do not yield reliable answers in every case; see McCullough
(1999). The GNR provides an easy way to see whether the first-order conditions are
actually satisfied. If all the t statistics for the GNR are not less than about 10−4,
and the R2 is not less than about 10−8, then the value of β̂ reported by the program
should be regarded with suspicion.

The second reason to run the GNR (17) is to calculate an estimate of Var(β̂), the
covariance matrix of the NLS estimates. The usual OLS covariance matrix from
regression (17) is

V̂ar(b̂) = s2(X̂>X̂)−1, (18)

which is similar to (16) except that everything is now evaluated at β̂. Thus running
the GNR (17) provides an easy way to calculate what is arguably the best estimate
of Var(β̂). Of course, for (18) to provide an asymptotically valid covariance matrix
estimate, it is essential that the error terms in (2) be independent and identically
distributed, as we have assumed so far. We will discuss ways to drop this assumption
in Section 7.

Since the GNR satisfies the one-step property, it and other artificial regressions can
evidently be used to obtain one-step efficient estimates. However, although one-step
estimation is of considerable theoretical interest, it is generally of modest practical
interest, for two reasons. Firstly, we often do not have a root-n consistent estimator
to start from and, secondly, modern computers are so fast that the savings from
stopping after just one step are rarely substantial.

What is often of great practical interest is the use of the GNR as part of a numerical
minimization algorithm to find the NLS estimates β̂ themselves. In practice, the
classical Gauss-Newton updating procedure (6) should generally be replaced by

β(m) = β(m−1) + α(m)b(m),

where α(m) is a scalar that is chosen in various ways by different algorithms, but
always in such a way that Q(β(m+1)) < Q(β(m)). Numerical optimization methods
are discussed by Press et al. (1992), among many others. Artificial regressions other
than the GNR allow these methods to be used more widely than just in the least
squares context.
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5. Hypothesis Testing with Artificial Regressions

Artificial regressions like the GNR are probably employed most frequently for hy-
pothesis testing. Suppose we wish to test a set of r equality restrictions on θ.
Without loss of generality, we can assume that these are zero restrictions. This al-
lows us to partition θ into two subvectors, θ1 of length k−r, and θ2 of length r, the
restrictions being that θ2 = 0. If the estimator θ̂ is not only root-n consistent but
also asymptotically normal, an appropriate statistic for testing these restrictions is

θ̂2
>(V̂ar(θ̂2)

)−1
θ̂2, (19)

which will be asymptotically distributed as χ2(r) under the null if V̂ar(θ̂2) is a
suitable estimate of the covariance matrix of θ̂2.

Suppose that r(θ) and R(θ) define an artificial regression for the estimator θ̂. Let
θ́ ≡ [θ́1

.... 0] be a vector of root-n consistent estimates under the null. Then, if
the variables of the artificial regression are evaluated at θ́, the regression can be
expressed as

r(θ́1,0) = R1(θ́1,0)b1 + R2(θ́2,0)b2 + residuals, (20)

where the partitioning of R = [R1 R2] corresponds to the partitioning of θ as
[θ1

.... θ2]. Regression (20) will usually be written simply as

ŕ = Ŕ1b1 + Ŕ2b2 + residuals,

although this notation hides the fact that θ́ satisfies the null hypothesis.

By the one-step property, b́2 from (20) is asymptotically equivalent under the null to
the estimator θ̂2, since under the null the true value of θ2 is zero. This suggests that
we may replace θ̂2 in (19) by b́2. By property (ii), the asymptotic covariance matrix
of n1/2(θ̂− θ0) is estimated by (n−1Ŕ>Ŕ)−1. A suitable estimate of the covariance
matrix of θ̂2 can be obtained from this by use of the Frisch-Waugh-Lovell (FWL)
theorem: See Davidson and MacKinnon (1993, Chapter 1) for a full treatment of
the FWL Theorem. The estimate is (Ŕ2

>Ḿ1Ŕ2)−1, where the orthogonal projection
matrix Ḿ1 is defined by

Ḿ1 = I− Ŕ1(Ŕ1
>Ŕ1)−1Ŕ1

>. (21)

By the same theorem, we have that

b́2 = (Ŕ2
>Ḿ1Ŕ2)−1Ŕ2

>Ḿ1ŕ. (22)

Thus the artificial regression version of the test statistic (19) is

b́2
>Ŕ2

>Ḿ1Ŕ2b́2 = ŕ>Ḿ1Ŕ2(Ŕ2
>Ḿ1Ŕ2)−1Ŕ2

>Ḿ1ŕ. (23)

– 8 –



The following theorem demonstrates the asymptotic validity of (23).

Theorem 1: If the regressand r(θ) and the regressor matrix R(θ) define
an artificial regression for the root-n consistent, asymptotically normal,
estimator θ̂, and if the partition R = [R1 R2] corresponds to the partition
θ = [θ1

.... θ2], then the statistic (23), computed at any root-n consistent
θ́ = [θ́1

.... 0], is asymptotically distributed as χ2(r) under the null hypothesis
that θ2 = 0, and is asymptotically equivalent to the generic statistic (19).

Proof: To prove this theorem, we need to show two things. The first is that

n−1Ŕ2
>Ḿ1Ŕ = n−1R2(θ0)M1(θ0)R(θ0) + op(1),

where θ0 is the true parameter vector, and M1(θ0) is defined analogously to (21).
This result follows by standard asymptotic arguments based on the one-step prop-
erty. The second is that the vector

n−1/2Ŕ2
>Ḿ1ŕ = n−1/2R2

>(θ0)M1(θ0)r(θ0) + op(1)

is asymptotically normally distributed. The equality here also follows by standard
asymptotic arguments. The asymptotic normality of θ̂ implies that b́ is asymptoti-
cally normally distributed. Therefore, by (22), n−1/2Ŕ2

>Ḿ1ŕ must also be asymp-
totically normally distributed. These two results imply that, asymptotically under
the null hypothesis, the test statistic (23) is a quadratic form in a normally dis-
tributed r--vector, the mean of which is zero, and the inverse of its covariance matrix.
Such a quadratic form follows the χ2(r) distribution.

Remarks: The statistic (23) can be computed as the difference between the sums
of squared residuals (SSR) from the regressions

ŕ = Ŕ1b1 + residuals, and (24)

ŕ = Ŕ1b1 + Ŕ2b2 + residuals. (25)

Equivalently, it can be computed as the difference between the explained sums of
squares (ESS), with the opposite sign, or as the ESS from the FWL regression
corresponding to (25):

Ḿ1ŕ = Ḿ1Ŕ2b2 + residuals.

If plim n−1ŕ>ŕ = 1 for all root-n consistent θ́, there are other convenient ways of
computing (23), or statistics asymptotically equivalent to it. One is the ordinary F
statistic for b2 = 0 in regression (25):

F =
ŕ>Ḿ1Ŕ2(Ŕ2

>Ḿ1Ŕ2)−1Ŕ2
>Ḿ1ŕ/r

ŕ>Ḿ1ŕ/(n− k)
, (26)
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which works because the denominator tends to a probability limit of 1 as n → ∞.
This statistic is, of course, in F rather than χ2 form.

Another frequently used test statistic is available if θ́ is actually the vector of re-
stricted estimates, that is, the estimator that minimizes the criterion function when
the restriction that θ2 = 0 is imposed. In this case, n times the uncentered R2

from (25) is a valid test statistic. With this choice of θ́, the ESS from (24) is zero,
by property (i). Thus (23) is just the ESS from (25). Since nR2 = ESS/(TSS/n),
where TSS denotes the total sum of squares, and since TSS/n → 1 as n → ∞, it
follows that this statistic is asymptotically equivalent to (23).

Even though the GNR does not satisfy condition (ii) when it is expressed in its usual
form with all variables not divided by the standard error s, the F statistic (26) and
the nR2 statistic are still valid test statistics, because they are both ratios. In fact,
variants of the GNR are routinely used to perform many types of specification tests.
These include tests for serial correlation similar to the ones proposed by Godfrey
(1978), nonnested hypothesis tests where both models are parametric (Davidson and
MacKinnon, 1981), and nonnested hypothesis tests where the alternative model is
nonparametric (Delgado and Stengos, 1994). They also include several Durbin-
Wu-Hausman, or DWH, tests, in which an efficient estimator is compared with an
inefficient estimator that is consistent under weaker conditions; see Sections 7.9 and
11.4 of Davidson and MacKinnon (1993).

6. The OPG Regression

By no means all interesting econometric models are regression models. It is there-
fore useful to see if artificial regressions other than the GNR exist for wide classes
of models. One of these is the outer-product-of-the-gradient regression, or OPG
regression, a particularly simple artificial regression that can be used with most
models that are estimated by maximum likelihood. Suppose we are interested in a
model of which the loglikelihood function can be written as

`(θ) =
n∑

t=1

`t(θ), (27)

where `t(·) denotes the contribution to the loglikelihood function associated with
observation t. This is the log of the density of the dependent variable(s) for observa-
tion t, conditional on observations 1, . . . , t−1. Thus lags of the dependent variable(s)
are allowed. The key feature of (27) is that `(θ) is a sum of contributions from each
of the n observations.

Now let G(θ) be the matrix with typical element

Gti(θ) ≡ ∂`t(θ)
∂θi

; t = 1, . . . , n, i = 1, . . . , k.
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The matrix G(θ) is called the matrix of contributions to the gradient, or the CG
matrix, because the derivative of the sample loglikelihood (27) with respect to θi,
the ith component of θ, is the sum of the elements of column i of G(θ). The OPG
regression associated with (27) can be written as

ι = G(θ)b + residuals, (28)

where ι denotes an n--vector of 1s.

It is easy to see that the OPG regression (28) satisfies the conditions for it to be an
artificial regression. Condition (i′) is evidently satisfied, since R>(θ)r(θ) = G>(θ)ι,
the components of which are the derivatives of `(θ) with respect to each of the θi.
Condition (ii) is also satisfied, because, under standard regularity conditions, if θ is
the true parameter vector,

plim
n→∞

(
n−1R>(θ)R(θ)

)
= plim

n→∞

(
n−1G>(θ)G(θ)

)
= I(θ).

Here I(θ) denotes the information matrix, defined as

I(θ) = lim
n→∞

1−
n

n∑
t=1

E
(
Gt
>(θ)Gt(θ)

)
,

where Gt(·) is the tth row of G(·). Since, as is well-known, the asymptotic covariance
matrix of n1/2(θ̂ − θ0) is given by the inverse of the information matrix, condition
(ii) is satisfied under the further weak regularity condition that I(θ) should be
continuous in θ. Condition (iii) is also satisfied, since it can be shown that one-
step estimates from the OPG regression are asymptotically equivalent to maximum
likelihood estimates. The proof is quite similar to the one for the GNR given in
Section 3.

It is particularly easy to compute an LM test by using the OPG regression. Let θ̃
denote the constrained ML estimates obtained by imposing r restrictions when max-
imizing the loglikelihood. Then the ESS from the OPG regression

ι = G(θ̃)b + residuals, (29)

which is equal to n times the uncentered R2, is the OPG form of the LM statistic.

Like the GNR, the OPG regression can be used for many purposes. The use of what
is essentially the OPG regression for obtaining maximum likelihood estimates and
computing covariance matrices was advocated by Berndt, Hall, Hall, and Hausman
(1974). Using it to compute Lagrange Multiplier, or LM, tests was suggested by
Godfrey and Wickens (1981), and using it to compute information matrix tests
was proposed by Chesher (1983) and Lancaster (1984). The OPG regression is
appealing for all these uses because it applies to a very wide variety of models
and requires only first derivatives. In general, however, both estimated covariance
matrices and test statistics based on the OPG regression are not very reliable in
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finite samples. In particular, a large number of papers, including Chesher and
Spady (1991), Davidson and MacKinnon (1985a, 1992), and Godfrey, McAleer, and
McKenzie (1988), have shown that, in finite samples, LM tests based on the OPG
regression tend to overreject, often very severely.

Despite this drawback, the OPG regression provides a particularly convenient way
to obtain various theoretical results. For example, suppose that we are interested
in the variance of θ̂2, the last element of θ̂. If θ1 denotes a vector of the remaining
k − 1 elements, and G(θ) and b are partitioned in the same way as θ, the OPG
regression becomes

ι = G1(θ)b1 + G2(θ)b2 + residuals,

and the FWL regression derived from this by retaining only the last regressor is

M1ι = M1G2 b2 + residuals,

where M1 ≡ I −G1(G1
>G1)−1G1

>, and the dependence on θ has been suppressed
for notational convenience. The covariance matrix estimate from this is just

(G2
>M1G2)−1 =

(
G2
>G2 −G2

>G1(G1
>G1)−1G1

>G2

)−1
. (30)

If we divide each of the components of (30) by n and take their probability limits,
we find that

Var
(
n1/2(θ̂2 − θ20)

)
= (I22 − I21I

−1
11 I12)−1.

This is a very well-known result, but, since its relation to the FWL theorem is not
obvious without appeal to the OPG regression, it is not usually obtained in such a
convenient or illuminating way.

7. An Artificial Regression for GMM Estimation

Another useful artificial regression, much less well known than the OPG regression,
is available for a class of models estimated by the generalized method of moments
(GMM). Many such models can be formulated in terms of functions ft(θ) of the
model parameters and the data, such that, when they are evaluated at the true θ,
their expectations conditional on corresponding information sets, Ωt, vanish. The
Ωt usually contain all information available prior to the time of observation t, and so,
as with the GNR and the OPG regression, lags of dependent variables are allowed.

Let the n× l matrix W denote the instruments used to obtain the GMM estimates.
The tth row of W, denoted Wt, must contain variables in Ωt only. The dimension
of θ is k, as before, and, for θ to be identified, we need l ≥ k. The GMM estimates
with l × l weighting matrix A are obtained by minimizing the criterion function

Q(θ) = 1−
2
f>(θ)WAW>f(θ) (31)
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with respect to θ. Here f(θ) is the n--vector with typical element ft(θ). For the pro-
cedure known as efficient GMM, the weighting matrix A is chosen so as to be propor-
tional, asymptotically at least, to the inverse of the covariance matrix of W>f(θ).
In the simplest case, the ft(θ) are serially uncorrelated and homoskedastic with
variance 1, and so an appropriate choice is A = (W>W )−1. With this choice, the
criterion function (31) becomes

Q(θ) = 1−
2
f>(θ)PW f(θ), (32)

where PW is the orthogonal projection on to the columns of W .

Let J(θ) be the negative of the n × k Jacobian matrix of f(θ), so that the tith

element of J(θ) is −∂ft/∂θi(θ). The first-order conditions for minimizing (32) are

J>(θ)PW f(θ) = 0. (33)

By standard arguments, it can be seen that the vector θ̂ that solves (33) is asymp-
totically normal and asymptotically satisfies the equation

n1/2(θ̂ − θ0) = (n−1J0
>PWJ0)−1n−1/2J0

>PW f0, (34)

with J0 = J(θ0) and f0 = f(θ0). See Davidson and MacKinnon (1993, Chapter 17),
for a full discussion of GMM estimation.

Now consider the artificial regression

f(θ) = PWJ(θ)b + residuals. (35)

By the first-order conditions (33) for θ, this equation clearly satisfies condition (i),
and in fact it also satisfies condition (i′) for the criterion function Q(θ) of (32).
Since the covariance matrix of f(θ0) is just the identity matrix, it follows from (34)
that condition (ii) is also satisfied. Arguments just like those presented in Section 3
for the GNR can be used to show that condition (iii), the one-step property, is also
satisfied by (35).

If the ft(θ0) are homoskedastic but with unknown variance σ2, regression (35) can
be used in exactly the same way as the GNR. Either the regressand and regressors
can be divided by a suitable consistent estimate of σ, or else all test statistics can
be computed as ratios, in F or nR2 form, as appropriate.

An important special case of (35) is provided by the class of regression models,
linear or nonlinear, estimated with instrumental variables (IV). Such a model can
be written in the form (3), but it will be estimated by minimizing, not the criterion
function (4) related to the sum of squared residuals, but rather

Q(β) ≡ 1−
2

(
y − x(β)

)>PW
(
y − x(β)

)
,

where W is an n × l matrix of instrumental variables. This criterion function has
exactly the same form as (32), with β instead of θ, and with f(β) = y − x(β). In
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addition, J(β) = X(β), where X(β) is defined, exactly as for the GNR, to have
tith element ∂xt/∂βi(β). The resulting artificial regression for the IV model, which
takes the form

y − x(β) = PWX(β)b + residuals, (36)

is often referred to as a GNR, because, except for the projection matrix PW , it is
identical to (7): See Davidson and MacKinnon (1993, Chapter 7).

8. Artificial Regressions and Heteroskedasticity

Covariance matrices and test statistics calculated via the GNR (7), or via artificial
regressions such as (35) and (36), are not asymptotically valid when the assumption
that the error terms are IID is violated. Consider a modified version of the nonlinear
regression model (3), in which E(uu>) = Ω, where Ω is an n× n diagonal matrix
with tth diagonal element ω2

t . Let Ω̂ denote an n × n diagonal matrix with the
squared residual û2

t as the tth diagonal element. It has been known since the work
of White (1980) that the matrix

(X̂>X̂)−1X̂>Ω̂X̂(X̂>X̂)−1 (37)

provides an estimator of Var(β̂), which can be used in place of the usual estimator,
s2(X̂>X̂)−1. Like the latter, this heteroskedasticity-consistent covariance matrix
estimator, or HCCME, can be computed by means of an artificial regression. We will
refer to this regression as the heteroskedasticity-robust Gauss-Newton Regression,
or HRGNR.

In order to derive the HRGNR, it is convenient to begin with a linear regression
model y = Xβ + u, and to consider the criterion function

Q(β) = 1−
2
(y −Xβ)>X(X>ΩX)−1X>(y −Xβ).

The negative of the gradient of this function with respect to β is

X>X(X>ΩX)−1X>(y −Xβ), (38)

and its Hessian is the matrix

X>X(X>ΩX)−1X>X, (39)

of which the inverse is the HCCME if we replace Ω by Ω̂. Equating the gradient to
zero just yields the OLS estimator, since X>X and X>ΩX are k × k nonsingular
matrices.

Let V be an n × n diagonal matrix with tth diagonal element equal to ωt; thus
V 2 = Ω. Consider the n× k regressor matrix R defined by

R = V X(X>V 2X)−1X>X = PVXV −1X, (40)
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where PVX projects orthogonally on to the columns of V X. We have

R>R = X>X(X>ΩX)−1X>X, (41)

which is just the Hessian (39). Let U(β) be a diagonal matrix with tth diagonal
element equal to yt −Xtβ. Then, if we define R(β) as in (40) but with V replaced
by U(β), we find that R̂>R̂ is the HCCME (37).

In order to derive the regressand r(β), note that, for condition (i′) to be satisfied,
we require

R>(β)r(β) = X>X(X>U2(β)X)−1X>(y −Xβ);

recall (38). Since the tth element of U(β) is yt −Xtβ, this implies that

r(β) = U−1(β)(y −Xβ) = ι.

In the general nonlinear case, X becomes X(β), and the HRGNR has the form

ι = PU(β)X(β)U
−1(β)X(β)b + residuals, (42)

where now the tth diagonal element of U(β) is yt − xt(β). When β = β̂, the vector
of NLS estimates,

r̂>R̂ = ι>PÛX̂Û−1X̂

= ι>ÛX̂(X̂>ÛÛX̂)−1X̂>ÛÛ−1X̂

= û>X̂(X̂>Ω̂X̂)−1X̂>X̂ = 0, (43)

because the NLS first-order conditions give X̂>û = 0. Thus condition (i) is satisfied
for the nonlinear case. Condition (ii) is satisfied by construction, as can be seen by
putting hats on everything in (41).

For condition (iii) to hold, regression (42) must satisfy the one-step property. We
will only show that this property holds for linear models. Extending the argument
to nonlinear models would be tedious but not difficult. In the linear case, evaluating
(42) at an arbitrary β́ gives

b́ = (X>Ú−1PÚXÚ−1X)−1X>Ú−1PÚXι.

With a little algebra, it can be shown that this reduces to

b́ = (X>X)−1X>ú = (X>X)−1X>(y −Xβ́) = β̂ − β́, (44)

where β̂ is the OLS estimator. It follows that the one-step estimator β́ + b́ is equal
to β̂, as we wished to show. In the nonlinear case, of course, we obtain an asymptotic
equality rather than an exact equality.
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As with the ordinary GNR, the HRGNR is particularly useful for hypothesis testing.
If we partition β as [β1

.... β2] and wish to test the r zero restrictions β2 = 0, we
need to run two versions of the regression and compute the difference between the
two SSRs or SSEs. The two regressions are:

ι = PŨX̃Ũ−1X̃1b1 + residuals, and (45)

ι = PŨX̃Ũ−1X̃1b1 + PŨX̃Ũ−1X̃2b2 + residuals. (46)

It is important to note that the first regression is not the HRGNR for the restricted
model, because it uses the matrix PŨX̃ rather than the matrix PŨX̃1

. In conse-
quence, the regressand in (45) will not be orthogonal to the regressors. This is why
we need to run two artificial regressions. We could compute an ordinary F statistic
instead of the difference between the SSRs from (45) and (46), but there would be
no advantage to doing so, since the F form of the test merely divides by a stochastic
quantity that tends to 1 asymptotically.

The HRGNR appears to be new. The trick of multiplying X(β) by U−1(β) in
order to obtain an HCCME by means of an OLS regression was used, in a different
context, by Messer and White (1984). This trick does cause a problem in some
cases. If any element on the diagonal of the matrix U(β) is equal to 0, the inverse
of that element cannot be computed. Therefore, it is necessary to replace any such
element by a small, positive number before computing U−1(β).

A different, and considerably more limited, type of heteroskedasticity-robust GNR,
which is applicable only to hypothesis testing, was first proposed by Davidson and
MacKinnon (1985b). It was later rediscovered by Wooldridge (1990, 1991) and
extended to handle other cases, including regression models with error terms that
have autocorrelation as well as heteroskedasticity of unknown form.

It is possible to construct a variety of artificial regressions that provide different
covariance matrix estimators for regression models. From (43) and (44), it follows
that any artificial regression with regressand

r(β) = U−1(β)
(
y − x(β)

)

and regressors
R(β) = PU(β)X(β)U

−1(β)X(β)

satisfies properties (i) and (iii) for the least-squares estimator, for any nonsingular
matrix U(β). Thus any sandwich covariance matrix estimator can be computed
by choosing U(β) appropriately; the estimator (37) is just one example. In fact,
it is possible to develop artificial regressions that allow testing not only with a
variety of different HCCMEs, but also with some sorts of heteroskedasticity and
autocorrelation consistent (HAC) covariance matrix estimators. It is also a simple
matter to use such estimators with modified versions of the artificial regression (35)
used with models estimated by GMM.

– 16 –



9. Double-Length Regressions

Up to this point, the number of observations for all the artificial regressions we
have studied has been equal to n, the number of observations in the data. In some
cases, however, artificial regressions may have 2n or even 3n observations. This can
happen whenever each observation makes two or more contributions to the criterion
function.

The first double-length artificial regression, or DLR, was proposed by Davidson and
MacKinnon (1984a). We will refer to it as the DLR, even though it is no longer
the only artificial regression with 2n observations. The class of models to which the
DLR applies is a subclass of the one used for GMM estimation. Such models may
be written as

ft(yt, θ) = εt, t = 1, . . . , n, εt ∼ NID(0, 1), (47)

where, as before, each ft(·) is a smooth function that depends on the data and
on a k--vector of parameters θ. Here, however, the ft are assumed to be normally
distributed conditional on the information sets Ωt, as well as being of mean zero,
serially uncorrelated, and homoskedastic with variance 1. Further, ft may depend
only on a scalar dependent variable yt, although lagged dependent variables are
allowed as explanatory variables.

The class of models (47) is much less restrictive than it may at first appear to be.
In particular, it is not essential that the error terms follow the normal distribution,
although it is essential that they follow some specified, continuous distribution,
which can be transformed into the standard normal distribution, so as to allow
the model to be written in the form of (47). A great many models that involve
transformations of the dependent variable can be put into the form of (47). For
example, consider the Box-Cox regression model

τ(yt, λ) =
k∑

i=1

βiτ(Xti, λ) +
l∑

j=1

γjZtj + ut, ut ∼ N(0, σ2), (48)

where τ(x, λ) = (xλ−1)/λ is the Box-Cox transformation (Box and Cox, 1964), yt is
the dependent variable, the Xti are independent variables that are always positive,
and the Ztj are additional independent variables. We can rewrite (48) in the form
of (47) by making the definition

ft(yt, θ) = 1−σ
(
τ(yt, λ)−

k∑

i=1

βiτ(Xti, λ)−
l∑

j=1

γjZtj

)
.

For the model (47), the contribution of the tth observation to the loglikelihood
function `(y,θ) is

`t(yt,θ) = − 1−
2

log(2π)− 1−
2
f 2

t (yt, θ) + kt(yt, θ),
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where

kt(yt,θ) ≡ log
∣∣∣∣
∂ft(yt,θ)

∂yt

∣∣∣∣
is a Jacobian term. Now let us make the definitions

Fti(yt, θ) ≡ ∂ft(yt,θ)
∂θi

and Kti(yt,θ) ≡ ∂kt(yt, θ)
∂θi

and define F (y,θ) and K(y, θ) as the n×k matrices with typical elements Fti(yt, θ)
and Kti(yt,θ) and typical rows Ft(y,θ) and Kt(y,θ). Similarly, let f(y, θ) be the
n--vector with typical element ft(yt,θ).

The DLR, which has 2n artificial observations, may be written as

[
f(y,θ)

ι

]
=

[−F (y, θ)
K(y, θ)

]
b + residuals. (49)

Since the gradient of `(y,θ) is

g(y, θ) = −F>(y,θ)f(y, θ) + K>(y, θ)ι, (50)

we see that regression (49) satisfies condition (i′). It can also be shown that it
satisfies conditions (ii) and (iii), and thus it has all the properties of an artificial
regression.

The DLR can be used for many purposes, including nonnested hypothesis tests of
models with different functional forms (Davidson and MacKinnon, 1984a), tests of
functional form (MacKinnon and Magee, 1990), and tests of linear and loglinear re-
gressions against Box-Cox alternatives like (48) (Davidson and MacKinnon, 1985a).
The latter application has recently been extended to models with AR(1) errors by
Baltagi (1999). An accessible discussion of the DLR may be found in Davidson and
MacKinnon (1988). When both the OPG regression and the DLR are available, the
finite-sample performance of the latter always seems to be very much better than
that of the former.

As we remarked earlier, the DLR is not the only artificial regression with 2n ar-
tificial observations. In particular, Orme (1995) showed how to construct such a
regression for the widely-used tobit model, and Davidson and MacKinnon (1999)
provided evidence that Orme’s regression generally works very well. It makes sense
that a double-length regression should be needed in this case, because the tobit
loglikelihood is the sum of two summations, which are quite different in form. One
summation involves all the observations for which the dependent variable is equal
to zero, and the other involves all the observations for which it takes on a positive
value.

– 18 –



10. An Artificial Regression for Binary Response Models

For binary response models such as the logit and probit models, there exists a
very simple artificial regression that can be derived as an extension of the Gauss-
Newton regression. It was independently suggested by Engle (1984) and Davidson
and MacKinnon (1984b).

The object of a binary response model is to predict the probability that the binary
dependent variable, yt, is equal to 1 conditional on some information set Ωt. A
useful class of binary response models can be written as

E(yt |Ωt) = Pr(yt = 1) = F (Ztβ). (51)

Here Zt is a row vector of explanatory variables that belong to Ωt, β is the vector of
parameters to be estimated, and F (x) is the differentiable cumulative distribution
function (CDF) of some scalar probability distribution. For the probit model, F (x)
is the standard normal CDF. For the logit model, F (x) is the logistic function

exp(x)
1 + exp(x)

=
(
1 + exp(−x)

)−1
.

The loglikelihood function for this class of binary response models is

`(β) =
n∑

t=1

(
(1− yt)log

(
1− F (Ztβ)

)
+ yt log

(
F (Ztβ)

))
, (52)

If f(x) = F ′(x) is the density corresponding for the CDF F (x), the first-order
conditions for maximizing (52) are

n∑
t=1

(yt − F̂t)f̂tZti

F̂t(1− F̂t)
= 0, i = 1, . . . , k, (53)

where Zti is the tith component of Zt, f̂t ≡ f(Ztβ̂) and F̂t ≡ F (Ztβ̂).

There is more than one way to derive the artificial regression that corresponds to
the model (51). The easiest is to rewrite it in the form of the nonlinear regression
model

yt = F (Ztβ) + ut. (54)

The error term ut here is evidently non-normal and heteroskedastic. Because yt

is like a Bernoulli trial with probability p given by F (Ztβ), and the variance of a
Bernoulli trial is p(1− p), the variance of ut is

vt(β) ≡ F (Ztβ)
(
1− F (Ztβ)

)
. (55)

The ordinary GNR for (54) would be

yt − F (Ztβ) = f(Ztβ)Ztb + residual,
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but the ordinary GNR is not appropriate because of the heteroskedasticity of the ut.
Multiplying both sides by the square root of the inverse of (55) yields the artificial
regression

v
−1/2
t (β)

(
yt − F (Ztβ)

)
= v

−1/2
t (β)f(Ztβ)Ztb + residual. (56)

This regression has all the usual properties of artificial regressions. It can be seen
from (53) that it satisfies condition (i′). Because a typical element of the information
matrix corresponding to (52) is

Iij(β) = plim
n→∞

(
1−
n

n∑
t=1

ZtiZtj
f(Ztβ)2

F (Ztβ)
(
1− F (Ztβ)

)
)

,

it is not difficult to show that regression (56) satisfies condition (ii). Finally, since
(56) has the structure of a GNR, the arguments used in Section 3 show that it also
satisfies condition (iii), the one-step property.

As an artificial regression, (56) can be used for all the things that other artifi-
cial regressions can be used for. In particular, when it is evaluated at restricted
estimates β̃, the explained sum of squares is an LM test statistic for testing the
restrictions. The normalization of the regressand by its standard error means that
other test statistics, such as nR2 and the ordinary F statistic for the coefficients
on the regressors that correspond to the restricted parameters to be zero, are also
asymptotically valid. However, they seem to have slightly poorer finite-sample prop-
erties than the ESS (Davidson and MacKinnon, 1984b). It is, of course, possible
to extend regression (56) in various ways. For example, it has been extended to
tests of the functional form of F (x) by Thomas (1993) and to tests of ordered logit
models by Murphy (1996).

11. Conclusion

In this paper, we have introduced the concept of an artificial regression and discussed
several examples. We have seen that artificial regressions can be useful for minimiz-
ing criterion functions, computing one-step estimates, calculating covariance matrix
estimates, and computing test statistics. The last of these is probably the most
common application. There is a close connection between the artificial regression
for a given model and the asymptotic theory for that model. Therefore, as we saw
in Section 6, artificial regressions can also be very useful for obtaining theoretical
results.

Most of the artificial regressions we have discussed are quite well-known. This is true
of the Gauss-Newton regression discussed in Sections 3 and 4, the OPG regression
discussed in Section 6, the double-length regression discussed in Section 9, and the
regression for binary response models discussed in Section 10. However, the artificial
regression for GMM estimation discussed in Section 7 does not appear to have been
treated previously in published work, and we believe that the heteroskedasticity-
robust GNR discussed in Section 8 is new.
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